IDEAS home Printed from https://ideas.repec.org/a/pal/gpprii/v45y2020i4d10.1057_s41288-020-00171-w.html
   My bibliography  Save this article

Analysis of the impact of cyber events for cyber insurance

Author

Listed:
  • Kjartan Palsson

    (University of Iceland)

  • Steinn Gudmundsson

    (University of Iceland)

  • Sachin Shetty

    (Old Dominion University)

Abstract

The mass adoption of cyber insurance will be predicated on the ability to conduct quantitative cyber risk assessment. This capability is crucial for not only providing insight into the cost of targeted threats but also providing incentives for insured enterprises to invest in protection aimed at preventing exploitation of targeted threats. Research indicates that asymmetric information, correlated loss and interdependent security issues make this difficult if insurers cannot monitor the cybersecurity efforts of the insured enterprises. In this paper, we present an analysis of cyber impacts based on cyber incidents reported in the Advisen cyber loss data feed. We show: (i) how exposure to cyber incidents varies between corporate sectors; (ii) how the type of incident relates to the number of entities and individuals affected by it; (iii) how the type of incident relates to the eventual financial cost; (iv) what type of information is most frequently compromised; (v) a breakdown of the main actors behind cyber incidents; and (vi) how tree-based classifiers can be used to gain insight into cyber risk indicators affecting the cost of incidents.

Suggested Citation

  • Kjartan Palsson & Steinn Gudmundsson & Sachin Shetty, 2020. "Analysis of the impact of cyber events for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 564-579, October.
  • Handle: RePEc:pal:gpprii:v:45:y:2020:i:4:d:10.1057_s41288-020-00171-w
    DOI: 10.1057/s41288-020-00171-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41288-020-00171-w
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41288-020-00171-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon Ashby & Trevor Buck & Stephanie Nöth-Zahn & Thomas Peisl, 2018. "Emerging IT Risks: Insights from German Banking," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 43(2), pages 180-207, April.
    2. Radanliev, Petar & De Roure, Dave & Cannady, Stacy & Mantilla Montalvo, Rafael & Nicolescu, Razvan & Huth, Michael, 2018. "Analysing IoT cyber risk for estimating IoT cyber insurance," EconStor Conference Papers 193692, ZBW - Leibniz Information Centre for Economics.
    3. Eling, Martin & Wirfs, Jan, 2019. "What are the actual costs of cyber risk events?," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1109-1119.
    4. Spencer Wheatley & Thomas Maillart & Didier Sornette, 2016. "The extreme risk of personal data breaches and the erosion of privacy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(1), pages 1-12, January.
    5. T. Maillart & D. Sornette, 2010. "Heavy-tailed distribution of cyber-risks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 75(3), pages 357-364, June.
    6. Lagazio, Monica & Sherif, Nazneen & Cushman, Mike, 2014. "A multi-level approach to understanding the impact of cyber crime on the financial sector," LSE Research Online Documents on Economics 57000, London School of Economics and Political Science, LSE Library.
    7. Christian Biener & Martin Eling & Jan Hendrik Wirfs, 2015. "Insurability of Cyber Risk: An Empirical Analysis†," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 40(1), pages 131-158, January.
    8. Guido Smidt & Wouter Botzen, 2018. "Perceptions of Corporate Cyber Risks and Insurance Decision-Making," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 43(2), pages 239-274, April.
    9. Howard Kunreuther & Mark V. Pauly, 2018. "Dynamic Insurance Decision-Making for Rare Events: The Role of Emotions," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 43(2), pages 335-355, April.
    10. Spencer Wheatley & Thomas Maillart & Didier Sornette, 2016. "The extreme risk of personal data breaches and the erosion of privacy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(1), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Eling & Kwangmin Jung, 2022. "Heterogeneity in cyber loss severity and its impact on cyber risk measurement," Risk Management, Palgrave Macmillan, vol. 24(4), pages 273-297, December.
    2. Seema Sangari & Eric Dallal & Michael Whitman, 2022. "Modeling Under-Reporting in Cyber Incidents," Risks, MDPI, vol. 10(11), pages 1-14, October.
    3. Lukáš Pavlík & Martin Ficek & Jakub Rak, 2022. "Dynamic Assessment of Cyber Threats in the Field of Insurance," Risks, MDPI, vol. 10(12), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kjartan Palsson & Steinn Gudmundsson & Sachin Shetty, 0. "Analysis of the impact of cyber events for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 0, pages 1-16.
    2. Daniel Zängerle & Dirk Schiereck, 2023. "Modelling and predicting enterprise-level cyber risks in the context of sparse data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 434-462, April.
    3. Martin Eling & Michael McShane & Trung Nguyen, 2021. "Cyber risk management: History and future research directions," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(1), pages 93-125, March.
    4. Spencer Wheatley & Annette Hofmann & Didier Sornette, 2021. "Addressing insurance of data breach cyber risks in the catastrophe framework," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 46(1), pages 53-78, January.
    5. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Trück & Jiwook Jang, 2023. "Cyber loss model risk translates to premium mispricing and risk sensitivity," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 372-433, April.
    6. Farkas, Sébastien & Lopez, Olivier & Thomas, Maud, 2021. "Cyber claim analysis using Generalized Pareto regression trees with applications to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 92-105.
    7. Zängerle, Daniel & Schiereck, Dirk, 2022. "Modelling and predicting enterprise‑level cyber risks in the context of sparse data availability," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136276, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Domenico Giovanni & Arturo Leccadito & Marco Pirra, 2021. "On the determinants of data breaches: A cointegration analysis," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 141-160, June.
    9. Eling, Martin & Loperfido, Nicola, 2017. "Data breaches: Goodness of fit, pricing, and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 126-136.
    10. Alessandro Mazzoccoli, 2023. "Optimal Cyber Security Investment in a Mixed Risk Management Framework: Examining the Role of Cyber Insurance and Expenditure Analysis," Risks, MDPI, vol. 11(9), pages 1-14, August.
    11. Alessandro Mazzoccoli & Maurizio Naldi, 2022. "An Overview of Security Breach Probability Models," Risks, MDPI, vol. 10(11), pages 1-29, November.
    12. Jevtić, Petar & Lanchier, Nicolas, 2020. "Dynamic structural percolation model of loss distribution for cyber risk of small and medium-sized enterprises for tree-based LAN topology," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 209-223.
    13. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    14. Bennet Skarczinski & Mathias Raschke & Frank Teuteberg, 2023. "Modelling maximum cyber incident losses of German organisations: an empirical study and modified extreme value distribution approach," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 463-501, April.
    15. Meng Sun & Yi Lu, 2022. "A Generalized Linear Mixed Model for Data Breaches and Its Application in Cyber Insurance," Risks, MDPI, vol. 10(12), pages 1-23, November.
    16. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    17. Ma, Boyuan & Chu, Tingjin & Jin, Zhuo, 2022. "Frequency and severity estimation of cyber attacks using spatial clustering analysis," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 33-45.
    18. Malavasi, Matteo & Peters, Gareth W. & Shevchenko, Pavel V. & Trück, Stefan & Jang, Jiwook & Sofronov, Georgy, 2022. "Cyber risk frequency, severity and insurance viability," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 90-114.
    19. Michael McShane & Trung Nguyen, 0. "Time-varying effects of cyberattacks on firm value," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 0, pages 1-36.
    20. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2023. "Bias-reduced and variance-corrected asymptotic Gaussian inference about extreme expectiles," TSE Working Papers 23-1444, Toulouse School of Economics (TSE), revised Nov 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:gpprii:v:45:y:2020:i:4:d:10.1057_s41288-020-00171-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.