IDEAS home Printed from https://ideas.repec.org/a/spr/envsyd/v41y2021i2d10.1007_s10669-020-09788-7.html
   My bibliography  Save this article

Dynamic routing with ant system and memory-based decision-making process

Author

Listed:
  • Sina Abolhoseini

    (K. N. Toosi University of Technology)

  • Ali Asghar Alesheikh

    (K. N. Toosi University of Technology)

Abstract

Dynamic routing is an essential tool for today’s cities. Dynamic routing problems can be solved by modelling them as dynamic optimization problems (DOPs). DOPs can be solved using Swarm Intelligence and specially ant colony optimization (ACO) algorithms. Although different versions of ACO have already been presented for DOPs, there are still limitations in preventing stagnation and premature convergence and increasing convergence rate. To address these issues, we present an in-memory pheromone trail and an algorithm based on it (named AS-gamma) in the framework of ACO. In-memory pheromone trail is effectively increasing diversity after a change in an environment. Results of experimenting AS-gamma in three scenarios on a real-world transportation network with different simulated traffic conditions demonstrated the effectiveness of the presented in-memory pheromone trail method. The advantages of AS-gamma over three existing DOP algorithms have been illustrated in terms of solutions quality. Offline performance and accuracy measures indicate that AS-gamma faces less stagnation, premature convergence and it is suitable for crowded environments.

Suggested Citation

  • Sina Abolhoseini & Ali Asghar Alesheikh, 2021. "Dynamic routing with ant system and memory-based decision-making process," Environment Systems and Decisions, Springer, vol. 41(2), pages 198-211, June.
  • Handle: RePEc:spr:envsyd:v:41:y:2021:i:2:d:10.1007_s10669-020-09788-7
    DOI: 10.1007/s10669-020-09788-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10669-020-09788-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10669-020-09788-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haitao Xu & Pan Pu & Feng Duan, 2018. "Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-13, February.
    2. Gao, Shangce & Wang, Yirui & Cheng, Jiujun & Inazumi, Yasuhiro & Tang, Zheng, 2016. "Ant colony optimization with clustering for solving the dynamic location routing problem," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 149-173.
    3. R. Montemanni & L. M. Gambardella & A. E. Rizzoli & A. V. Donati, 2005. "Ant Colony System for a Dynamic Vehicle Routing Problem," Journal of Combinatorial Optimization, Springer, vol. 10(4), pages 327-343, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachary A. Collier & James H. Lambert & Igor Linkov, 2021. "Algorithms and models for decision making in advanced technology systems," Environment Systems and Decisions, Springer, vol. 41(2), pages 179-180, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Maskooki, Alaleh & Deb, Kalyanmoy & Kallio, Markku, 2022. "A customized genetic algorithm for bi-objective routing in a dynamic network," European Journal of Operational Research, Elsevier, vol. 297(2), pages 615-629.
    3. Lars M. Hvattum & Arne Løkketangen & Gilbert Laporte, 2006. "Solving a Dynamic and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic," Transportation Science, INFORMS, vol. 40(4), pages 421-438, November.
    4. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    5. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Cristián E. Cortés & Doris Sáez & Alfredo Núñez & Diego Muñoz-Carpintero, 2009. "Hybrid Adaptive Predictive Control for a Dynamic Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 43(1), pages 27-42, February.
    7. Chi Ming Tam & Thomas Tong & Bill Wong, 2007. "An integrated system for earthmoving planning," Construction Management and Economics, Taylor & Francis Journals, vol. 25(11), pages 1127-1137.
    8. Mariusz Izdebski & Marianna Jacyna, 2021. "An Efficient Hybrid Algorithm for Energy Expenditure Estimation for Electric Vehicles in Urban Service Enterprises," Energies, MDPI, vol. 14(7), pages 1-23, April.
    9. Bian, Zheyong & Liu, Xiang & Bai, Yun, 2020. "Mechanism design for on-demand first-mile ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 77-117.
    10. Jie Zhang & Yifan Zhu & Tao Wang & Weiping Wang & Rui Wang & Xiaobo Li, 2022. "An Improved Intelligent Auction Mechanism for Emergency Material Delivery," Mathematics, MDPI, vol. 10(13), pages 1-30, June.
    11. Abdelkader Sbihi & Richard W. Eglese, 2007. "The Relationship between Vehicle Routing & Scheduling and Green Logistics - A Literature Survey," Working Papers hal-00644133, HAL.
    12. Jaller, Miguel & Pahwa, Anmol, 2023. "Coping with the Rise of E-commerce Generated Home Deliveries through Innovative Last-mile Technologies and Strategies," Institute of Transportation Studies, Working Paper Series qt5t76x0kh, Institute of Transportation Studies, UC Davis.
    13. Jean-Charles Créput & Amir Hajjam & Abderrafiaa Koukam & Olivier Kuhn, 2012. "Self-organizing maps in population based metaheuristic to the dynamic vehicle routing problem," Journal of Combinatorial Optimization, Springer, vol. 24(4), pages 437-458, November.
    14. Schyns, M., 2015. "An ant colony system for responsive dynamic vehicle routing," European Journal of Operational Research, Elsevier, vol. 245(3), pages 704-718.
    15. Daqing Wu & Rong Yan & Hongtao Jin & Fengmao Cai, 2023. "An Adaptive Nutcracker Optimization Approach for Distribution of Fresh Agricultural Products with Dynamic Demands," Agriculture, MDPI, vol. 13(7), pages 1-21, July.
    16. Gao, Shangce & Wang, Yirui & Cheng, Jiujun & Inazumi, Yasuhiro & Tang, Zheng, 2016. "Ant colony optimization with clustering for solving the dynamic location routing problem," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 149-173.
    17. S. F. Ghannadpour & S. Noori & R. Tavakkoli-Moghaddam, 2014. "A multi-objective vehicle routing and scheduling problem with uncertainty in customers’ request and priority," Journal of Combinatorial Optimization, Springer, vol. 28(2), pages 414-446, August.
    18. Shaghaghi, Saba & Bonakdari, Hossein & Gholami, Azadeh & Ebtehaj, Isa & Zeinolabedini, Maryam, 2017. "Comparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel design," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 271-286.
    19. Shejun Deng & Yingying Yuan & Yong Wang & Haizhong Wang & Charles Koll, 2020. "Collaborative multicenter logistics delivery network optimization with resource sharing," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    20. Baris Yildiz & Martin Savelsbergh, 2019. "Provably High-Quality Solutions for the Meal Delivery Routing Problem," Transportation Science, INFORMS, vol. 53(5), pages 1372-1388, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envsyd:v:41:y:2021:i:2:d:10.1007_s10669-020-09788-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.