IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v19y2017i4d10.1007_s10668-016-9804-9.html
   My bibliography  Save this article

Impacts of predicted sea level rise on land use/land cover categories of the adjacent coastal areas of Mumbai megacity, India

Author

Listed:
  • Malay Kumar Pramanik

    (Jawaharlal Nehru University)

Abstract

Physical and ecological responses of the coastal areas in the vicinity of Mumbai, India, due to relative sea level rise are examined by different inundation scenarios. Evaluation of potential habitat loss under sea level rise was made by incorporating the land use/land cover (LULC) adopted from the digital elevation model with the satellite imagery. LULC categories overlaid on 1.0, 2.0, 3.0 and 4.0 m coastal elevation showed that the coastal areas of Mumbai were mostly covered by vegetation followed by barren land, agricultural land, urban areas and water bodies. For the relative sea level rise scenarios of 1.0, 2.0, 3.0 and 4.0 m, the tidal inundation areas were estimated to be 257.85, 385.58, 487.56 and 570.63 km2, respectively, using GIS techniques. The losses of urban areas were also estimated at 25.32, 41.64, 54.61 and 78.86 km2 for the 1.0, 2.0, 3.0 and 4.0 m relative sea level rise, respectively, which is most alarming information for the most populated city on the eastern coast of India. The results conclude that relative sea level rise scenario will lead profound impacts on LULC categories as well as on coastal features and landforms in the adjoining part of Mumbai. The sea level rise would also reduce the drainage gradients that promote flooding condition to rainstorms and subsequently increase saltwater intrusion into coastal regions. Alterations in the coastal features and landforms correlated with inundation characteristics that make the coastal region more vulnerable in the coming decades due to huge development activities and population pressures in Mumbai.

Suggested Citation

  • Malay Kumar Pramanik, 2017. "Impacts of predicted sea level rise on land use/land cover categories of the adjacent coastal areas of Mumbai megacity, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1343-1366, August.
  • Handle: RePEc:spr:endesu:v:19:y:2017:i:4:d:10.1007_s10668-016-9804-9
    DOI: 10.1007/s10668-016-9804-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-016-9804-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-016-9804-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dasgupta, Susmita & Laplante, Benoit & Meisner, Craig & Wheeler, David & Jianping Yan, 2007. "The impact of sea level rise on developing countries : a comparative analysis," Policy Research Working Paper Series 4136, The World Bank.
    2. Brenda Lin & Yong Khoo & Matthew Inman & Chi-Hsiang Wang & Sorada Tapsuwan & Xiaoming Wang, 2014. "Assessing inundation damage and timing of adaptation: sea level rise and the complexities of land use in coastal communities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(5), pages 551-568, June.
    3. A. Arun Kumar & Pravin Kunte, 2012. "Coastal vulnerability assessment for Chennai, east coast of India using geospatial techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 853-872, October.
    4. Sutapa Chaudhuri & Debashree Dutta & Sayantika Goswami & Anirban Middey, 2013. "Intensity forecast of tropical cyclones over North Indian Ocean using multilayer perceptron model: skill and performance verification," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 97-113, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Li & Zhanrui Leng & Yueming Wu & Guanlin Li & Guangqian Ren & Guirong Wu & Yongcan Jiang & Taitiya Kenneth Yuguda & Daolin Du, 2021. "The Impact of Sea Embankment Reclamation on Greenhouse Gas GHG Fluxes and Stocks in Invasive Spartina alterniflora and Native Phragmites australis Wetland Marshes of East China," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    2. García Sánchez, Francisco & Govindarajulu, Dhanapal, 2023. "Integrating blue-green infrastructure in urban planning for climate adaptation: Lessons from Chennai and Kochi, India," Land Use Policy, Elsevier, vol. 124(C).
    3. Atul Kumar & Sunil Singh & Malay Pramanik & Shairy Chaudhary & Ashwani Kumar Maurya & Manoj Kumar, 2022. "Watershed prioritization for soil erosion mapping in the Lesser Himalayan Indian basin using PCA and WSA methods in conjunction with morphometric parameters and GIS-based approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3723-3761, March.
    4. Atul Kumar & Malay Pramanik & Shairy Chaudhary & Mahabir Singh Negi & Sylvia Szabo, 2023. "Geospatial multi-criteria evaluation to identify groundwater potential in a Himalayan District, Rudraprayag, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1519-1560, February.
    5. Shairy Chaudhary & Atul Kumar & Malay Pramanik & Mahabir Singh Negi, 2022. "Land evaluation and sustainable development of ecotourism in the Garhwal Himalayan region using geospatial technology and analytical hierarchy process," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2225-2266, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malay Kumar Pramanik & Poli Dash & Dimple Behal, 2021. "Improving outcomes for socioeconomic variables with coastal vulnerability index under significant sea-level rise: an approach from Mumbai coasts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13819-13853, September.
    2. Malay Kumar Pramanik & Sumantra Sarathi Biswas & Biswajit Mondal & Raghunath Pal, 2016. "Coastal vulnerability assessment of the predicted sea level rise in the coastal zone of Krishna–Godavari delta region, Andhra Pradesh, east coast of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(6), pages 1635-1655, December.
    3. L. Oosterhout & E. Koks & P. Beukering & S. Schep & T. Tiggeloven & S. Manen & M. Knaap & C. Duinmeijer & S. L. Buijs, 2023. "An Integrated Assessment of Climate Change Impacts and Implications on Bonaire," Economics of Disasters and Climate Change, Springer, vol. 7(2), pages 147-178, July.
    4. B. Sudhakara Reddy & Gaudenz B. Assenza, 2008. "The Great climate debate : A Developing country perspective," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2008-008, Indira Gandhi Institute of Development Research, Mumbai, India.
    5. Kwasi Appeaning Addo, 2015. "Monitoring sea level rise-induced hazards along the coast of Accra in Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1293-1307, September.
    6. Julian David Hunt & Edward Byers, 2019. "Reducing sea level rise with submerged barriers and dams in Greenland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 779-794, June.
    7. P. Ward & M. Marfai & F. Yulianto & D. Hizbaron & J. Aerts, 2011. "Coastal inundation and damage exposure estimation: a case study for Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 899-916, March.
    8. Fant, Charles & Gebretsadik, Yohannes & Strzepek, Kenneth, 2012. "Impact of Climate Change on Irrigation, Crops and Hydropower in Vietnam," WIDER Working Paper Series 079, World Institute for Development Economic Research (UNU-WIDER).
    9. Rania A. Bekheet & Mohamed El Raey & Alaa-El-Din Yassin, 2017. "The crestline approach for assessing the development of coastal flooding due to sea level rise," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 1113-1130, October.
    10. Rong, Fang, 2010. "Understanding developing country stances on post-2012 climate change negotiations: Comparative analysis of Brazil, China, India, Mexico, and South Africa," Energy Policy, Elsevier, vol. 38(8), pages 4582-4591, August.
    11. Kousky, Carolyn & Rostapshova, Olga & Toman, Michael & Zeckhauser, Richard, 2009. "Responding to threats of climate change mega-catastrophes," Policy Research Working Paper Series 5127, The World Bank.
    12. Matthias Garschagen, 2013. "Resilience and organisational institutionalism from a cross-cultural perspective: an exploration based on urban climate change adaptation in Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(1), pages 25-46, May.
    13. Klaus Desmet & Robert E. Kopp & Scott A. Kulp & Dávid Krisztián Nagy & Michael Oppenheimer & Esteban Rossi-Hansberg & Benjamin H. Strauss, 2021. "Evaluating the Economic Cost of Coastal Flooding," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(2), pages 444-486, April.
    14. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CIRED Working Papers halshs-02080285, HAL.
    15. Dasgupta, Susmita & Kamal, Farhana Akhter & Khan, Zahirul Huque & Choudhury, Sharifuzzaman & Nishat, Ainun, 2014. "River salinity and climate change : evidence from coastal Bangladesh," Policy Research Working Paper Series 6817, The World Bank.
    16. Adam, Antonis & Tsarsitalidou, Sofia, 2022. "The effect of international development association's (IDA) aid on conflict. A fuzzy regression discontinuity approach," European Journal of Political Economy, Elsevier, vol. 74(C).
    17. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    18. Sangam Shrestha & Proloy Deb & Thi Bui, 2016. "Adaptation strategies for rice cultivation under climate change in Central Vietnam," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 15-37, January.
    19. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    20. Aishwarya Narendr & S. Vinay & Bharath Haridas Aithal & Sutapa Das, 2022. "Multi-dimensional parametric coastal flood risk assessment at a regional scale using GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9569-9597, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:19:y:2017:i:4:d:10.1007_s10668-016-9804-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.