IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v3y2013i4p537-552.html
   My bibliography  Save this article

Linear–Quadratic Time-Inconsistent Mean Field Games

Author

Listed:
  • A. Bensoussan
  • K. Sung
  • S. Yam

Abstract

In this paper, we study a class of time-inconsistent analogs (in the sense of Hu et al. (Time-inconsistent stochastic linear–quadratic control. Preprint, 2012 ) which is originated from the mean-variance portfolio selection problem with state-dependent risk aversion in the context of financial economics) of the standard Linear–Quadratic Mean Field Games considered in Huang et al. (Commun. Inf. Syst. 6(3):221–252, 2006 ) and Bensoussan et al. (Linear–quadratic mean field games. http://www.sta.cuhk.edu.hk/scpy , submitted, 2012 ). For the one-dimensional case, we first establish the unique time-consistent optimal strategy under an arbitrary guiding path, with which we further obtain the unique time-consistent mean-field equilibrium strategy under a mild convexity condition. Second, for the dimension greater than one, by applying the adjoint equation approach, we formulate a sufficient condition under which the unique existence of both, time-consistent optimal strategy under a given guiding path and time-consistent equilibrium strategy, can be guaranteed. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • A. Bensoussan & K. Sung & S. Yam, 2013. "Linear–Quadratic Time-Inconsistent Mean Field Games," Dynamic Games and Applications, Springer, vol. 3(4), pages 537-552, December.
  • Handle: RePEc:spr:dyngam:v:3:y:2013:i:4:p:537-552
    DOI: 10.1007/s13235-013-0090-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s13235-013-0090-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s13235-013-0090-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(4), pages 691-705, August.
    2. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    3. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(1), pages 225-228, February.
    4. Olivier Guéant & Pierre Louis Lions & Jean-Michel Lasry, 2011. "Mean Field Games and Applications," Post-Print hal-01393103, HAL.
    5. Bezalel Peleg & Menahem E. Yaari, 1973. "On the Existence of a Consistent Course of Action when Tastes are Changing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 40(3), pages 391-401.
    6. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(5), pages 879-883, October.
    7. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(2), pages 411-413, April.
    8. Hamidou Tembine & Quanyan Zhu & Tamer Basar, 2011. "Risk-sensitive mean field stochastic differential games," Post-Print hal-00643547, HAL.
    9. repec:dau:papers:123456789/11473 is not listed on IDEAS
    10. Wei, J. & Wong, K.C. & Yam, S.C.P. & Yung, S.P., 2013. "Markowitz’s mean–variance asset–liability management with regime switching: A time-consistent approach," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 281-291.
    11. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(6), pages 1195-1198, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2021. "A statistical field approach to capital accumulation," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(4), pages 817-908, October.
    2. Alain Bensoussan & Guiyuan Ma & Chi Chung Siu & Sheung Chi Phillip Yam, 2022. "Dynamic mean–variance problem with frictions," Finance and Stochastics, Springer, vol. 26(2), pages 267-300, April.
    3. Romuald Élie & Emma Hubert & Thibaut Mastrolia & Dylan Possamaï, 2021. "Mean–field moral hazard for optimal energy demand response management," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 399-473, January.
    4. Zongxia Liang & Keyu Zhang, 2023. "Time-inconsistent mean field and n-agent games under relative performance criteria," Papers 2312.14437, arXiv.org, revised Apr 2024.
    5. Paulwin Graewe & Ulrich Horst & Ronnie Sircar, 2021. "A Maximum Principle approach to deterministic Mean Field Games of Control with Absorption," Papers 2104.06152, arXiv.org.
    6. René Carmona & Gökçe Dayanıklı & Mathieu Laurière, 2022. "Mean Field Models to Regulate Carbon Emissions in Electricity Production," Dynamic Games and Applications, Springer, vol. 12(3), pages 897-928, September.
    7. Boualem Djehiche & Minyi Huang, 2016. "A Characterization of Sub-game Perfect Equilibria for SDEs of Mean-Field Type," Dynamic Games and Applications, Springer, vol. 6(1), pages 55-81, March.
    8. Diogo Gomes & João Saúde, 2014. "Mean Field Games Models—A Brief Survey," Dynamic Games and Applications, Springer, vol. 4(2), pages 110-154, June.
    9. Fu, Guanxing & Horst, Ulrich, 2017. "Mean Field Games with Singular Controls," Rationality and Competition Discussion Paper Series 22, CRC TRR 190 Rationality and Competition.
    10. Vassili N. Kolokoltsov, 2021. "Quantum Mean-Field Games with the Observations of Counting Type," Games, MDPI, vol. 12(1), pages 1-14, January.
    11. Qinglong Zhou & Gaofeng Zong, 2016. "Time-Inconsistent Stochastic Linear-quadratic Differential Game," Papers 1607.00638, arXiv.org.
    12. Adrian Patrick Kennedy & Suresh P. Sethi & Chi Chung Siu & Sheung Chi Phillip Yam, 2021. "Cooperative Advertising in a Dynamic Three‐Echelon Supply Chain," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 3881-3905, November.
    13. Li Miao & Lina Wang & Shuai Li & Haitao Xu & Xianwei Zhou, 2019. "Optimal defense strategy based on the mean field game model for cyber security," International Journal of Distributed Sensor Networks, , vol. 15(2), pages 15501477198, February.
    14. Arvind V. Shrivats & Dena Firoozi & Sebastian Jaimungal, 2022. "A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 779-824, July.
    15. Dena Firoozi & Arvind V Shrivats & Sebastian Jaimungal, 2021. "Principal agent mean field games in REC markets," Papers 2112.11963, arXiv.org, revised Jun 2022.
    16. Berkay Anahtarci & Can Deha Kariksiz & Naci Saldi, 2023. "Q-Learning in Regularized Mean-field Games," Dynamic Games and Applications, Springer, vol. 13(1), pages 89-117, March.
    17. Luchnikov, I. & Métivier, D. & Ouerdane, H. & Chertkov, M., 2021. "Super-relaxation of space–time-quantized ensemble of energy loads to curtail their synchronization after demand response perturbation," Applied Energy, Elsevier, vol. 285(C).
    18. Shuzhen Yang, 2020. "Bellman type strategy for the continuous time mean-variance model," Papers 2005.01904, arXiv.org, revised Jul 2020.
    19. Romuald Elie & Thibaut Mastrolia & Dylan Possamaï, 2019. "A Tale of a Principal and Many, Many Agents," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 440-467, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boualem Djehiche & Minyi Huang, 2016. "A Characterization of Sub-game Perfect Equilibria for SDEs of Mean-Field Type," Dynamic Games and Applications, Springer, vol. 6(1), pages 55-81, March.
    2. A. Bensoussan & K. C. J. Sung & S. C. P. Yam & S. P. Yung, 2016. "Linear-Quadratic Mean Field Games," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 496-529, May.
    3. Minyi Huang, 2013. "A Mean Field Capital Accumulation Game with HARA Utility," Dynamic Games and Applications, Springer, vol. 3(4), pages 446-472, December.
    4. Dario Bauso & Raffaele Pesenti & Marco Tolotti, 2016. "Opinion Dynamics and Stubbornness Via Multi-Population Mean-Field Games," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 266-293, July.
    5. Dario Bauso & Quanyan Zhu & Tamer Başar, 2016. "Decomposition and Mean-Field Approach to Mixed Integer Optimal Compensation Problems," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 606-630, May.
    6. Fabio Priuli, 2015. "Linear-Quadratic $$N$$ N -Person and Mean-Field Games: Infinite Horizon Games with Discounted Cost and Singular Limits," Dynamic Games and Applications, Springer, vol. 5(3), pages 397-419, September.
    7. Dario Bauso & Hamidou Tembine & Tamer Başar, 2016. "Robust Mean Field Games," Dynamic Games and Applications, Springer, vol. 6(3), pages 277-303, September.
    8. Ermal Feleqi, 2013. "The Derivation of Ergodic Mean Field Game Equations for Several Populations of Players," Dynamic Games and Applications, Springer, vol. 3(4), pages 523-536, December.
    9. Fabio Bagagiolo & Dario Bauso, 2014. "Mean-Field Games and Dynamic Demand Management in Power Grids," Dynamic Games and Applications, Springer, vol. 4(2), pages 155-176, June.
    10. Jun Moon & Tamer Başar, 2019. "Risk-Sensitive Mean Field Games via the Stochastic Maximum Principle," Dynamic Games and Applications, Springer, vol. 9(4), pages 1100-1125, December.
    11. Paolo Dai Pra & Elena Sartori & Marco Tolotti, 2019. "Climb on the Bandwagon: Consensus and Periodicity in a Lifetime Utility Model with Strategic Interactions," Dynamic Games and Applications, Springer, vol. 9(4), pages 1061-1075, December.
    12. Yakut, Oguz, 2021. "Implementation of hydraulically driven barrel shooting control by utilizing artificial neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1206-1223.
    13. X. Qin & G. Huang, 2009. "An Inexact Chance-constrained Quadratic Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 661-695, March.
    14. Md. Yousuf Gazi & Khandakar Tahmida Tafhim, 2019. "Investigation of Heavy-mineral Deposits Using Multispectral Satellite Imagery in the Eastern Coastal Margin of Bangladesh," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 3(2), pages 16-22, October.
    15. Billionnet, Alain, 2011. "Solving the probabilistic reserve selection problem," Ecological Modelling, Elsevier, vol. 222(3), pages 546-554.
    16. Minghe Sun, 2005. "Warm-Start Routines for Solving Augmented Weighted Tchebycheff Network Programs in Multiple-Objective Network Programming," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 422-437, November.
    17. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    18. Eichengreen, Barry & Kletzer, Kenneth & Mody, Ashoka, 2003. "Crisis Resolution: Next Steps," Santa Cruz Center for International Economics, Working Paper Series qt4cj974r4, Center for International Economics, UC Santa Cruz.
    19. Tansel, Aysit & Karao?lan, Deniz, 2016. "The Causal Effect of Education on Health Behaviors: Evidence from Turkey," IZA Discussion Papers 10020, Institute of Labor Economics (IZA).
    20. Di Feng & Bettina Klaus, 2022. "Preference revelation games and strict cores of multiple‐type housing market problems," International Journal of Economic Theory, The International Society for Economic Theory, vol. 18(1), pages 61-76, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:3:y:2013:i:4:p:537-552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.