IDEAS home Printed from https://ideas.repec.org/a/spr/drugsa/v40y2017i11d10.1007_s40264-017-0555-9.html
   My bibliography  Save this article

Using Multiple Pharmacovigilance Models Improves the Timeliness of Signal Detection in Simulated Prospective Surveillance

Author

Listed:
  • Rolina D. van Gaalen

    (McGill University)

  • Michal Abrahamowicz

    (McGill University
    McGill University Health Centre)

  • David L. Buckeridge

    (McGill University)

Abstract

Introduction Prospective pharmacovigilance aims to rapidly detect safety concerns related to medical products. The exposure model selected for pharmacovigilance impacts the timeliness of signal detection. However, in most real-life pharmacovigilance studies, little is known about which model correctly represents the association and there is no evidence to guide the selection of an exposure model. Different exposure models reflect different aspects of exposure history, and their relevance varies across studies. Therefore, one potential solution is to apply several alternative exposure models simultaneously, with each model assuming a different exposure–risk association, and then combine the model results. Methods We simulated alternative clinically plausible associations between time-varying drug exposure and the hazard of an adverse event. Prospective surveillance was conducted on the simulated data by estimating parametric and semi-parametric exposure–risk models at multiple times during follow-up. For each model separately, and using combined evidence from different subsets of models, we compared the time to signal detection. Results Timely detection across the simulated associations was obtained by fitting a set of pharmacovigilance models. This set included alternative parametric models that assumed different exposure–risk associations and flexible models that made no assumptions regarding the form/shape of the association. Times to detection generated using a simple combination of evidence from multiple models were comparable to those observed under the ideal, but unrealistic, scenario where pharmacovigilance relied on the single ‘true’ model used for data generation. Conclusions Simulation results indicate that, if the true model is not known, an association can be detected in a more timely manner by first fitting a carefully selected set of exposure–risk models and then generating a signal as soon as any of the models considered yields a test statistic value below a predetermined testing threshold.

Suggested Citation

  • Rolina D. van Gaalen & Michal Abrahamowicz & David L. Buckeridge, 2017. "Using Multiple Pharmacovigilance Models Improves the Timeliness of Signal Detection in Simulated Prospective Surveillance," Drug Safety, Springer, vol. 40(11), pages 1119-1129, November.
  • Handle: RePEc:spr:drugsa:v:40:y:2017:i:11:d:10.1007_s40264-017-0555-9
    DOI: 10.1007/s40264-017-0555-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40264-017-0555-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40264-017-0555-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    2. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    3. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
    4. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    5. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    6. Zhongqi Liang & Qihua Wang & Yuting Wei, 2022. "Robust model selection with covariables missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 539-557, June.
    7. HAEDO, Christian & MOUCHART , Michel & ,, 2013. "Specialized agglomerations with areal data: model and detection," LIDAM Discussion Papers CORE 2013060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    9. Schomaker Michael & Heumann Christian, 2011. "Model Averaging in Factor Analysis: An Analysis of Olympic Decathlon Data," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(1), pages 1-15, January.
    10. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    11. Tumala, Mohammed M & Olubusoye, Olusanya E & Yaaba, Baba N & Yaya, OlaOluwa S & Akanbi, Olawale B, 2017. "Forecasting Nigerian Inflation using Model Averaging methods: Modelling Frameworks to Central Banks," MPRA Paper 88754, University Library of Munich, Germany, revised Feb 2018.
    12. José Manuel Cordero Ferrera & Manuel Muñiz Pérez & Rosa Simancas Rodríguez, 2015. "The influence of socioeconomic factors on cognitive and non-cognitive educational outcomes," Investigaciones de Economía de la Educación volume 10, in: Marta Rahona López & Jennifer Graves (ed.), Investigaciones de Economía de la Educación 10, edition 1, volume 10, chapter 21, pages 413-438, Asociación de Economía de la Educación.
    13. Satoshi Hattori & Masayuki Henmi, 2014. "Stratified doubly robust estimators for the average causal effect," Biometrics, The International Biometric Society, vol. 70(2), pages 270-277, June.
    14. Naoya Sueishi & Arihiro Yoshimura, 2017. "Focused Information Criterion for Series Estimation in Partially Linear Models," The Japanese Economic Review, Japanese Economic Association, vol. 68(3), pages 352-363, September.
    15. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    16. Tune H Pers & Anders Albrechtsen & Claus Holst & Thorkild I A Sørensen & Thomas A Gerds, 2009. "The Validation and Assessment of Machine Learning: A Game of Prediction from High-Dimensional Data," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-8, August.
    17. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    18. Robert J. B. Goudie & Sach Mukherjee & Jan-Emmanuel De Neve & Andrew J. Oswald & Stephen Wu, 2011. "Happiness as a Driver of Risk-Avoiding Behavior," CESifo Working Paper Series 3451, CESifo.
    19. Hai Wang & Xinjie Chen & Nancy Flournoy, 2016. "The focused information criterion for varying-coefficient partially linear measurement error models," Statistical Papers, Springer, vol. 57(1), pages 99-113, March.
    20. Gildas Mazo & François Portier, 2021. "Parametric versus nonparametric: The fitness coefficient," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1344-1383, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:drugsa:v:40:y:2017:i:11:d:10.1007_s40264-017-0555-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com/economics/journal/40264 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.