IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i5d10.1007_s00180-022-01193-9.html
   My bibliography  Save this article

Uniform design with prior information of factors under weighted wrap-around $$L_2$$ L 2 -discrepancy

Author

Listed:
  • Biao Luo

    (Jishou University)

  • Hongyi Li

    (Jishou University)

  • Yingying Wei

    (Jishou University)

  • Zujun Ou

    (Jishou University)

Abstract

Uniform design is one of the most frequently used designs of experiment, and all factors are usually regarded as equally important in the existing literature of uniform design. If some prior information of certain factors is known, the potential importance of factors should be distinguished. In this paper, by assigning different weights to factors with different importance, the weighted wrap-around $$L_2$$ L 2 -discrepancy is proposed to measure the uniformity of design when some prior information of certain factors are known. The properties of weighted wrap-around $$L_2$$ L 2 -discrepancy are explored. Accordingly, the weighted generalized wordlength pattern is proposed to describe the aberration of these kinds of designs. The relationship between the weighted wrap-around $$L_2$$ L 2 -discrepancy and weighted generalized wordlength pattern is built, and a lower bound of weighted wrap-around $$L_2$$ L 2 -discrepancy is obtained. Numerical results show that both weighted wrap-around $$L_2$$ L 2 -discrepancy and weighted generalized wordlength pattern are precisely to capture the difference of importance among the columns of design.

Suggested Citation

  • Biao Luo & Hongyi Li & Yingying Wei & Zujun Ou, 2022. "Uniform design with prior information of factors under weighted wrap-around $$L_2$$ L 2 -discrepancy," Computational Statistics, Springer, vol. 37(5), pages 2717-2739, November.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:5:d:10.1007_s00180-022-01193-9
    DOI: 10.1007/s00180-022-01193-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01193-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01193-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred J. Hickernell, 2002. "Uniform designs limit aliasing," Biometrika, Biometrika Trust, vol. 89(4), pages 893-904, December.
    2. Liuping Hu & Kashinath Chatterjee & Jiaqi Liu & Zujun Ou, 2020. "New lower bound for Lee discrepancy of asymmetrical factorials," Statistical Papers, Springer, vol. 61(4), pages 1763-1772, August.
    3. Zhou, Yong-Dao & Ning, Jian-Hui & Song, Xie-Bing, 2008. "Lee discrepancy and its applications in experimental designs," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1933-1942, September.
    4. Hong Qin & Kai-Tai Fang, 2004. "Discrete discrepancy in factorial designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 60(1), pages 59-72, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chatterjee, Kashinath & Qin, Hong, 2008. "A new look at discrete discrepancy," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2988-2991, December.
    2. Hong Qin & Na Zou & Kashinath Chatterjee, 2009. "Connection between uniformity and minimum moment aberration," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 79-88, June.
    3. Liuping Hu & Kashinath Chatterjee & Jiaqi Liu & Zujun Ou, 2020. "New lower bound for Lee discrepancy of asymmetrical factorials," Statistical Papers, Springer, vol. 61(4), pages 1763-1772, August.
    4. Rong-Xian Yue & Kashinath Chatterjee, 2010. "Bayesian U-type design for nonparametric response surface prediction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(2), pages 219-231, September.
    5. Li, Hongyi & Chatterjee, Kashinath & Li, Bo & Qin, Hong, 2016. "Construction of Sudoku-based uniform designs with mixed levels," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 111-118.
    6. Liuping Hu & Zujun Ou & Hongyi Li, 2020. "Construction of four-level and mixed-level designs with zero Lee discrepancy," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 129-139, January.
    7. Qiming Bai & Hongyi Li & Shixian Zhang & Jiezhong Tian, 2023. "Design Efficiency of the Asymmetric Minimum Projection Uniform Designs," Mathematics, MDPI, vol. 11(3), pages 1-20, February.
    8. Narayanaswamy Balakrishnan & Hong Qin & Kashinath Chatterjee, 2016. "Generalized projection discrepancy and its applications in experimental designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 19-35, January.
    9. Zou, Na & Ren, Ping & Qin, Hong, 2009. "A note on Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 496-500, February.
    10. Kang Wang & Zujun Ou & Jiaqi Liu & Hongyi Li, 2021. "Uniformity pattern of q-level factorials under mixture discrepancy," Statistical Papers, Springer, vol. 62(4), pages 1777-1793, August.
    11. A. M. Elsawah & Kai-Tai Fang & Ping He & Hong Qin, 2021. "Sharp lower bounds of various uniformity criteria for constructing uniform designs," Statistical Papers, Springer, vol. 62(3), pages 1461-1482, June.
    12. Fasheng Sun & Jie Chen & Min-Qian Liu, 2011. "Connections between uniformity and aberration in general multi-level factorials," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(3), pages 305-315, May.
    13. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    14. Fang Pang & Min-Qian Liu, 2012. "A note on connections among criteria for asymmetrical factorials," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(1), pages 23-32, January.
    15. Mingyao Ai & Shuyuan He, 2006. "Interaction balance for symmetrical factorial designs with generalized minimum aberration," Statistical Papers, Springer, vol. 47(1), pages 125-135, January.
    16. E. Androulakis & C. Koukouvinos, 2013. "A new variable selection method for uniform designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2564-2578, December.
    17. Yong-Dao Zhou & Hongquan Xu, 2014. "Space-Filling Fractional Factorial Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1134-1144, September.
    18. Elsawah, A.M., 2016. "Constructing optimal asymmetric combined designs via Lee discrepancy," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 24-31.
    19. Yan-Ping Gao & Si-Yu Yi & Yong-Dao Zhou, 2022. "Level-augmented uniform designs," Statistical Papers, Springer, vol. 63(2), pages 441-460, April.
    20. Li, Peng-Fei & Chen, Bao-Jiang & Liu, Min-Qian & Zhang, Run-Chu, 2006. "A note on minimum aberration and clear criteria," Statistics & Probability Letters, Elsevier, vol. 76(10), pages 1007-1011, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:5:d:10.1007_s00180-022-01193-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.