IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i3d10.1007_s00180-020-00959-3.html
   My bibliography  Save this article

Modelling rankings in R: the PlackettLuce package

Author

Listed:
  • Heather L. Turner

    (University of Warwick)

  • Jacob Etten

    (Bioversity International)

  • David Firth

    (University of Warwick
    The Alan Turing Institute)

  • Ioannis Kosmidis

    (University of Warwick
    The Alan Turing Institute)

Abstract

This paper presents the R package PlackettLuce, which implements a generalization of the Plackett–Luce model for rankings data. The generalization accommodates both ties (of arbitrary order) and partial rankings (complete rankings of subsets of items). By default, the implementation adds a set of pseudo-comparisons with a hypothetical item, ensuring that the underlying network of wins and losses between items is always strongly connected. In this way, the worth of each item always has a finite maximum likelihood estimate, with finite standard error. The use of pseudo-comparisons also has a regularization effect, shrinking the estimated parameters towards equal item worth. In addition to standard methods for model summary, PlackettLuce provides a method to compute quasi standard errors for the item parameters. This provides the basis for comparison intervals that do not change with the choice of identifiability constraint placed on the item parameters. Finally, the package provides a method for model-based partitioning using covariates whose values vary between rankings, enabling the identification of subgroups of judges or settings with different item worths. The features of the package are demonstrated through application to classic and novel data sets.

Suggested Citation

  • Heather L. Turner & Jacob Etten & David Firth & Ioannis Kosmidis, 2020. "Modelling rankings in R: the PlackettLuce package," Computational Statistics, Springer, vol. 35(3), pages 1027-1057, September.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:3:d:10.1007_s00180-020-00959-3
    DOI: 10.1007/s00180-020-00959-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-020-00959-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-020-00959-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cristina Mollica & Luca Tardella, 2017. "Bayesian Plackett–Luce Mixture Models for Partially Ranked Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 442-458, June.
    2. R. L. Plackett, 1975. "The Analysis of Permutations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 24(2), pages 193-202, June.
    3. Irurozki, Ekhine & Calvo, Borja & Lozano, Jose A., 2016. "PerMallows: An R Package for Mallows and Generalized Mallows Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i12).
    4. Hatzinger, Reinhold & Dittrich, Regina, 2012. "prefmod: An R Package for Modeling Preferences Based on Paired Comparisons, Rankings, or Ratings," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i10).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimír Holý & Jan Zouhar, 2022. "Modelling time‐varying rankings with autoregressive and score‐driven dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1427-1450, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierpaolo D’Urso & Vincenzina Vitale, 2022. "A Kemeny Distance-Based Robust Fuzzy Clustering for Preference Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 600-647, November.
    2. Cristina Mollica & Luca Tardella, 2021. "Bayesian analysis of ranking data with the Extended Plackett–Luce model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 175-194, March.
    3. Cristina Mollica & Luca Tardella, 2017. "Bayesian Plackett–Luce Mixture Models for Partially Ranked Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 442-458, June.
    4. Baker, Rose D. & McHale, Ian G., 2014. "A dynamic paired comparisons model: Who is the greatest tennis player?," European Journal of Operational Research, Elsevier, vol. 236(2), pages 677-684.
    5. Yeawon Yoo & Adolfo R. Escobedo, 2021. "A New Binary Programming Formulation and Social Choice Property for Kemeny Rank Aggregation," Decision Analysis, INFORMS, vol. 18(4), pages 296-320, December.
    6. Ben Aoki-Sherwood & Catherine Bregou & David Liben-Nowell & Kiran Tomlinson & Thomas Zeng, 2024. "Bounding Consideration Probabilities in Consider-Then-Choose Ranking Models," Papers 2401.11016, arXiv.org.
    7. Leonardo Egidi & Nicola Torelli, 2021. "Comparing Goal-Based and Result-Based Approaches in Modelling Football Outcomes," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 801-813, August.
    8. Dipankar Das, 2023. "A Model of Competitive Assortment Planning Algorithm," Papers 2307.09479, arXiv.org.
    9. Antoine Désir & Vineet Goyal & Danny Segev & Chun Ye, 2020. "Constrained Assortment Optimization Under the Markov Chain–based Choice Model," Management Science, INFORMS, vol. 66(2), pages 698-721, February.
    10. Shipra Agrawal & Vashist Avadhanula & Vineet Goyal & Assaf Zeevi, 2019. "MNL-Bandit: A Dynamic Learning Approach to Assortment Selection," Operations Research, INFORMS, vol. 67(5), pages 1453-1485, September.
    11. Alessandro Barbiero, 2021. "Inducing a desired value of correlation between two point-scale variables: a two-step procedure using copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 307-334, June.
    12. Marie-Louise Lackner & Martin Lackner, 2017. "On the likelihood of single-peaked preferences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(4), pages 717-745, April.
    13. Sprengholz, Philipp & Felgendreff, Lisa & Buyx, Alena & Betsch, Cornelia, 2023. "Toward future triage regulations: Investigating preferred allocation principles of the German public," Health Policy, Elsevier, vol. 134(C).
    14. Kumar Goutam & Vineet Goyal & Agathe Soret, 2019. "A Generalized Markov Chain Model to Capture Dynamic Preferences and Choice Overload," Papers 1911.06716, arXiv.org, revised Dec 2020.
    15. Weichen Wu & Nynke Niezink & Brian Junker, 2022. "A diagnostic framework for the Bradley–Terry model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 461-484, December.
    16. Wu, Ping & Koop, Gary, 2023. "Estimating the ordering of variables in a VAR using a Plackett–Luce prior," Economics Letters, Elsevier, vol. 230(C).
    17. Tessa Haesevoets & Alain Van Hiel & Mario Pandelaere & Dries H. Bostyn & David De Cremer, 2017. "How much compensation is too much? An investigation of the effectiveness of financial overcompensation as a means to enhance customer loyalty," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 12(2), pages 183-197, March.
    18. Dirk van Straaten & René Fahr, 2021. "Fighting Fire with Fire - Overcoming Ambiguity Aversion by Introducing more Ambiguity," Working Papers Dissertations 73, Paderborn University, Faculty of Business Administration and Economics.
    19. Federico Fioravanti & Iyad Rahwan & Fernando Abel Tohm'e, 2022. "Classes of Aggregation Rules for Ethical Decision Making in Automated Systems," Papers 2206.05160, arXiv.org, revised Jun 2023.
    20. Yu-Shan Shih & Kuang-Hsun Liu, 2019. "Regression trees for detecting preference patterns from rank data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 683-702, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:3:d:10.1007_s00180-020-00959-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.