IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i3d10.1007_s00180-020-00952-w.html
   My bibliography  Save this article

A faster algorithm to estimate multiresolution densities

Author

Listed:
  • Federico Palacios-González

    (University of Granada)

  • Rosa M. García-Fernández

    (University of Granada)

Abstract

This paper develops a consistent estimator for coefficients of probability density functions defined in Multiresolution Analysis Structures (MRD), and an algorithm based on the proposed estimator. This algorithm, named FD, behaves similarly to the maximum likelihood estimator for large datasets. The process, by which the coefficients estimated by the FD algorithm and, then, used to estimate the MRD on a regular point grid, is called Multiresolution Density Estimation (MRDE) and leads to consistent MRD estimations. Simulations trials reveal that the FD algorithm based on a Frequency Data Count is faster and easier to apply than the Expectation Maximization (EM). The research also shows that using the same data and grid, the MRDE is frequently faster than the Kernel Density Estimation using Fast Fourier Transform algorithm $$(KDE_{FFT})$$ ( K D E FFT ) . These results suggest the MRDE method for estimating Multiresolution densities could be applied to estimate probability densities in the big data field.

Suggested Citation

  • Federico Palacios-González & Rosa M. García-Fernández, 2020. "A faster algorithm to estimate multiresolution densities," Computational Statistics, Springer, vol. 35(3), pages 1207-1230, September.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:3:d:10.1007_s00180-020-00952-w
    DOI: 10.1007/s00180-020-00952-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-020-00952-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-020-00952-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chesneau, Christophe & Dewan, Isha & Doosti, Hassan, 2016. "Nonparametric estimation of a quantile density function by wavelet methods," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 161-174.
    2. Mahani, Alireza S. & Sharabiani, Mansour T.A., 2015. "SIMD parallel MCMC sampling with applications for big-data Bayesian analytics," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 75-99.
    3. Koo, Ja-Yong & Kooperberg, Charles, 2000. "Logspline density estimation for binned data," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 133-147, January.
    4. Gramacki, Artur & Gramacki, Jarosław, 2017. "FFT-based fast bandwidth selector for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 27-45.
    5. García-Fernández, Rosa María & Gottlieb, Daniel & Palacios-González, Frederico, 2013. "Polarization, growth and social policy in the case of Israel, 1997-2008," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 7, pages 1-40.
    6. Bezandry, Paul H. & Bonney, George E. & Gannoun, Ali, 2005. "Consistent estimation of the density and hazard rate functions for censored data via the wavelet method," Statistics & Probability Letters, Elsevier, vol. 74(4), pages 366-372, October.
    7. Song, Jongwoo & Song, Seongjoo, 2012. "A quantile estimation for massive data with generalized Pareto distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 143-150, January.
    8. O’Brien, Travis A. & Kashinath, Karthik & Cavanaugh, Nicholas R. & Collins, William D. & O’Brien, John P., 2016. "A fast and objective multidimensional kernel density estimation method: fastKDE," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 148-160.
    9. Kooperberg, Charles & Stone, Charles J., 1991. "A study of logspline density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 12(3), pages 327-347, November.
    10. Yogendra P. Chaubey & Esmaeil Shirazi, 2015. "On Wavelet Estimation of the Derivatives of a Density Based on Biased Data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(21), pages 4491-4506, November.
    11. Pinheiro, Aluisio & Vidakovic, Brani, 1997. "Estimating the square root of a density via compactly supported wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 25(4), pages 399-415, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopes, Hedibert F. & Dias, Ronaldo, 2011. "Bayesian mixture of parametric and nonparametric density estimation: A Misspecification Problem," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(1), March.
    2. Sylvain Sardy & Paul Tseng, 2010. "Density Estimation by Total Variation Penalized Likelihood Driven by the Sparsity ℓ1 Information Criterion," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 321-337, June.
    3. Bak, Kwan-Young & Jhong, Jae-Hwan & Lee, JungJun & Shin, Jae-Kyung & Koo, Ja-Yong, 2021. "Penalized logspline density estimation using total variation penalty," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    4. Castillo, Joan del & Serra, Isabel, 2015. "Likelihood inference for generalized Pareto distribution," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 116-128.
    5. Morettin Pedro A. & Toloi Clelia M.C. & Chiann Chang & de Miranda José C.S., 2011. "Wavelet Estimation of Copulas for Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-31, October.
    6. Kirkby, J. Lars & Leitao, Álvaro & Nguyen, Duy, 2021. "Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    7. Chang, Meng-Shiuh & Wu, Ximing, 2015. "Transformation-based nonparametric estimation of multivariate densities," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 71-88.
    8. Xu Zhao & Zhongxian Zhang & Weihu Cheng & Pengyue Zhang, 2019. "A New Parameter Estimator for the Generalized Pareto Distribution under the Peaks over Threshold Framework," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    9. Koenker, Roger & Portnoy, Stephen, 2000. "Some pathological regression asymptotics under stable conditions," Statistics & Probability Letters, Elsevier, vol. 50(3), pages 219-228, November.
    10. Derong Luo & Ting Wu & Ming Li & Benshun Yi & Haibo Zuo, 2020. "Application of VMD and Hilbert Transform Algorithms on Detection of the Ripple Components of the DC Signal," Energies, MDPI, vol. 13(4), pages 1-20, February.
    11. Richard Spady & Sami Stouli, 2020. "Gaussian Transforms Modeling and the Estimation of Distributional Regression Functions," Papers 2011.06416, arXiv.org.
    12. Koo, Ja-Yong & Kooperberg, Charles, 2000. "Logspline density estimation for binned data," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 133-147, January.
    13. Kwun Chuen Gary Chan & Mei-Cheng Wang, 2017. "Semiparametric Modeling and Estimation of the Terminal Behavior of Recurrent Marker Processes Before Failure Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 351-362, January.
    14. Kyriakos Chourdakis, 2002. "Continuous Time Regime Switching Models and Applications in Estimating Processes with Stochastic Volatility and Jumps," Working Papers 464, Queen Mary University of London, School of Economics and Finance.
    15. Ronaldo Dias & Nancy L. Garcia & Guilherme Ludwig & Marley A. Saraiva, 2015. "Aggregated functional data model for near-infrared spectroscopy calibration and prediction," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(1), pages 127-143, January.
    16. Dias, Ronaldo, 2002. "Nonparametric econometrics," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 22(1), May.
    17. Papkov, Galen I. & Scott, David W., 2010. "Local-moment nonparametric density estimation of pre-binned data," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3421-3429, December.
    18. Dias, Ronaldo & Garcia, Nancy L., 2007. "Consistent estimator for basis selection based on a proxy of the Kullback-Leibler distance," Journal of Econometrics, Elsevier, vol. 141(1), pages 167-178, November.
    19. Li, Song & Tso, Geoffrey K.F. & Long, Lufan, 2017. "Powered embarrassing parallel MCMC sampling in Bayesian inference, a weighted average intuition," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 11-20.
    20. Rodney V. Fonseca & Aluísio Pinheiro, 2020. "Wavelet estimation of the dimensionality of curve time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1175-1204, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:3:d:10.1007_s00180-020-00952-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.