IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i1d10.1007_s00180-019-00948-1.html
   My bibliography  Save this article

Rejoinder on: Hierarchical inference for genome-wide association studies: a view on methodology with software

Author

Listed:
  • Claude Renaux

    (ETH Zürich)

  • Laura Buzdugan

    (ETH Zürich)

  • Markus Kalisch

    (ETH Zürich)

  • Peter Bühlmann

    (ETH Zürich)

Abstract

No abstract is available for this item.

Suggested Citation

  • Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Rejoinder on: Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 59-67, March.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:1:d:10.1007_s00180-019-00948-1
    DOI: 10.1007/s00180-019-00948-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00948-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-019-00948-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meinshausen, Nicolai & Meier, Lukas & Bühlmann, Peter, 2009. "p-Values for High-Dimensional Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1671-1681.
    2. Rajen D. Shah & Richard J. Samworth, 2013. "Variable selection with error control: another look at stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 55-80, January.
    3. Ryan J. Tibshirani & Jonathan Taylor & Richard Lockhart & Robert Tibshirani, 2016. "Exact Post-Selection Inference for Sequential Regression Procedures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 600-620, April.
    4. Nicolai Meinshausen, 2008. "Hierarchical testing of variable importance," Biometrika, Biometrika Trust, vol. 95(2), pages 265-278.
    5. Jonas R. Klasen & Elke Barbez & Lukas Meier & Nicolai Meinshausen & Peter Bühlmann & Maarten Koornneef & Wolfgang Busch & Korbinian Schneeberger, 2016. "A multi-marker association method for genome-wide association studies without the need for population structure correction," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine Bichat & Christophe Ambroise & Mahendra Mariadassou, 2022. "Hierarchical correction of p-values via an ultrametric tree running Ornstein-Uhlenbeck process," Computational Statistics, Springer, vol. 37(3), pages 995-1013, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 1-40, March.
    2. The Tien Mai, 2023. "Reliable Genetic Correlation Estimation via Multiple Sample Splitting and Smoothing," Mathematics, MDPI, vol. 11(9), pages 1-13, May.
    3. Solari, Aldo & Djordjilović, Vera, 2022. "Multi split conformal prediction," Statistics & Probability Letters, Elsevier, vol. 184(C).
    4. Paulo C. Rodrigues & Vanda M. Lourenço, 2020. "Comments on: Hierarchical Inference for genome-wide association studies: a view on methodology with software by Paulo C. Rodrigues and Vanda M. Lourenço," Computational Statistics, Springer, vol. 35(1), pages 57-58, March.
    5. Sonja Greven & Fabian Scheipl, 2020. "Comments on: Inference and computation with Generalized Additive Models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 343-350, June.
    6. Ruben Dezeure & Peter Bühlmann & Cun-Hui Zhang, 2017. "High-dimensional simultaneous inference with the bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 685-719, December.
    7. Xiao Huang, 2022. "Boosted p-Values for High-Dimensional Vector Autoregression," Papers 2211.02215, arXiv.org, revised Mar 2023.
    8. Liang, Weijuan & Ma, Shuangge & Lin, Cunjie, 2021. "Marginal false discovery rate for a penalized transformation survival model," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    9. Awijen, Haithem & Ben Zaied, Younes & Ben Lahouel, Béchir & Khlifi, Foued, 2023. "Machine learning for US cross-industry return predictability under information uncertainty," Research in International Business and Finance, Elsevier, vol. 64(C).
    10. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    11. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Wang Xiaoming & Dinu Irina & Liu Wei & Yasui Yutaka, 2011. "Linear Combination Test for Hierarchical Gene Set Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-18, March.
    13. Gregory Vaughan & Robert Aseltine & Kun Chen & Jun Yan, 2017. "Stagewise generalized estimating equations with grouped variables," Biometrics, The International Biometric Society, vol. 73(4), pages 1332-1342, December.
    14. Gilles R. Ducharme & Walid Al Akhras, 2016. "Tree based diagnostic procedures following a smooth test of goodness-of-fit," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 971-989, November.
    15. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    16. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    17. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    18. Ian W. McKeague & Min Qian, 2015. "An Adaptive Resampling Test for Detecting the Presence of Significant Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1422-1433, December.
    19. Armeen Taeb & Parikshit Shah & Venkat Chandrasekaran, 2020. "False discovery and its control in low rank estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 997-1027, September.
    20. Guillermo Durand & Gilles Blanchard & Pierre Neuvial & Etienne Roquain, 2020. "Post hoc false positive control for structured hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1114-1148, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:1:d:10.1007_s00180-019-00948-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.