IDEAS home Printed from https://ideas.repec.org/a/spr/comaot/v25y2019i4d10.1007_s10588-018-9275-7.html
   My bibliography  Save this article

Work process improvement through simulation optimization of task assignment and mental workload

Author

Listed:
  • Cansu Kandemir

    (Izmir University of Economics)

  • Holly A. H. Handley

    (Old Dominion University)

Abstract

The outcome of a work process depends on which tasks are assigned to which employees. However, sometimes optimized assignments based on employees’ qualifications may result in an uneven and ineffective workload distribution. Likewise, an even workload distribution without considering the employee’s qualifications may cause unproductive employee-task matching that results in low performance. This trade-off is even more noticeable for work processes during critical time junctions, such as in military command centers and emergency rooms that require fast, effective and error free performance. This study evaluates optimizing task-employee assignments according to their capabilities while also maintaining a workload threshold. The goal is to select the employee-task assignments in order to minimize the average duration of a work process while keeping the employees under a workload threshold to prevent errors caused by overload. Due to uncertainties related with the inter-arrival time of work orders, task durations and employees’ instantaneous workload, a simulation–optimization approach is required. A discrete event human performance simulation model was used to evaluate the objective function of the problem coupled with a genetic algorithm based meta-heuristic optimization approach to search the solution space. A sample work process is used to show the effectiveness of the developed simulation–optimization approach. Numerical tests indicate that the proposed approach finds better solutions than common practices and other simulation–optimization methods. Accordingly, by using this method, organizations can increase performance, manage excess-level workloads, and generate higher satisfactory environments for employees, without modifying the structure of the process itself.

Suggested Citation

  • Cansu Kandemir & Holly A. H. Handley, 2019. "Work process improvement through simulation optimization of task assignment and mental workload," Computational and Mathematical Organization Theory, Springer, vol. 25(4), pages 389-427, December.
  • Handle: RePEc:spr:comaot:v:25:y:2019:i:4:d:10.1007_s10588-018-9275-7
    DOI: 10.1007/s10588-018-9275-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10588-018-9275-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10588-018-9275-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McCormack, Richard & Coates, Graham, 2015. "A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival," European Journal of Operational Research, Elsevier, vol. 247(1), pages 294-309.
    2. Michael C. Fu, 2002. "Feature Article: Optimization for simulation: Theory vs. Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 192-215, August.
    3. Marco Better & Fred Glover & Gary Kochenberger & Haibo Wang, 2008. "Simulation Optimization: Applications In Risk Management," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 571-587.
    4. Regine Pei Tze Oh & Susan M. Sanchez & Thomas W. Lucas & Hong Wan & Mark E. Nissen, 2009. "Efficient experimental design tools for exploring large simulation models," Computational and Mathematical Organization Theory, Springer, vol. 15(3), pages 237-257, September.
    5. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    6. Asoke Kumar Bhunia & Amiya Biswas & Subhra Sankha Samanta, 2017. "A genetic algorithm-based approach for unbalanced assignment problem in interval environment," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 27(1), pages 62-77.
    7. Azadivar, Farhad & Tompkins, George, 1999. "Simulation optimization with qualitative variables and structural model changes: A genetic algorithm approach," European Journal of Operational Research, Elsevier, vol. 113(1), pages 169-182, February.
    8. Qingcheng Zeng & Ali Diabat & Qian Zhang, 2015. "A simulation optimization approach for solving the dual-cycling problem in container terminals," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(8), pages 806-826, November.
    9. Tsai, Hsien-Tang & Moskowitz, Herbert & Lee, Lai-Hsi, 2003. "Human resource selection for software development projects using Taguchi's parameter design," European Journal of Operational Research, Elsevier, vol. 151(1), pages 167-180, November.
    10. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Risk management of wind farm micro-siting using an enhanced genetic algorithm with simulation optimization," Renewable Energy, Elsevier, vol. 107(C), pages 508-521.
    11. Didier M. Perdu & Alexander H. Levis, 1998. "Adaptation as a Morphing Process: A Methodology for the Design and Evaluation of Adaptive Organizational Structures," Computational and Mathematical Organization Theory, Springer, vol. 4(1), pages 5-41, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    2. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    3. Lam, Chiou-Peng & Masek, Martin & Kelly, Luke & Papasimeon, Michael & Benke, Lyndon, 2019. "A simheuristic approach for evolving agent behaviour in the exploration for novel combat tactics," Operations Research Perspectives, Elsevier, vol. 6(C).
    4. Jingguo Wang & Raj Sharman & Stanley Zionts, 2012. "Functionality defense through diversity: a design framework to multitier systems," Annals of Operations Research, Springer, vol. 197(1), pages 25-45, August.
    5. Chang, Kuo-Hao & Chen, Tzu-Li & Yang, Fu-Hao & Chang, Tzu-Yin, 2023. "Simulation optimization for stochastic casualty collection point location and resource allocation problem in a mass casualty incident," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1237-1262.
    6. David Schmaranzer & Roland Braune & Karl F. Doerner, 2021. "Multi-objective simulation optimization for complex urban mass rapid transit systems," Annals of Operations Research, Springer, vol. 305(1), pages 449-486, October.
    7. M Laguna & J Molina & F Pérez & R Caballero & A G Hernández-Díaz, 2010. "The challenge of optimizing expensive black boxes: a scatter search/rough set theory approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 53-67, January.
    8. David Schmaranzer & Roland Braune & Karl F. Doerner, 2020. "Population-based simulation optimization for urban mass rapid transit networks," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 767-805, December.
    9. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    10. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    11. Chang, Kuo-Hao & Kuo, Po-Yi, 2018. "An efficient simulation optimization method for the generalized redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1094-1101.
    12. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    13. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    14. Nicola Rossi & Mario Bačić & Lovorka Librić & Meho Saša Kovačević, 2023. "Methodology for Identification of the Key Levee Parameters for Limit-State Analyses Based on Sequential Bifurcation," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    15. Giscard Valonne Mouafo Nebot & Haiyan Wang, 2022. "Port Terminal Performance Evaluation and Modeling," Logistics, MDPI, vol. 6(1), pages 1-22, January.
    16. Warren B. Powell, 2010. "Rejoinder ---The Languages of Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 23-25, February.
    17. Brian W. Kulik & Timothy Baker, 2008. "Putting the organization back into computational organization theory: a complex Perrowian model of organizational action," Computational and Mathematical Organization Theory, Springer, vol. 14(2), pages 84-119, June.
    18. Jonathan D Linton & Julian Scott Yeomans & Reena Yoogalingam, 2002. "Policy Planning Using Genetic Algorithms Combined with Simulation: The Case of Municipal Solid Waste," Environment and Planning B, , vol. 29(5), pages 757-778, October.
    19. V. Kungurtsev & F. Rinaldi, 2021. "A zeroth order method for stochastic weakly convex optimization," Computational Optimization and Applications, Springer, vol. 80(3), pages 731-753, December.
    20. Julian Yeomans, 2011. "Efficient generation of alternative perspectives in public environmental policy formulation: applying co-evolutionary simulation–optimization to municipal solid waste management," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(4), pages 391-413, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comaot:v:25:y:2019:i:4:d:10.1007_s10588-018-9275-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.