IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v167y2021i3d10.1007_s10584-021-03179-w.html
   My bibliography  Save this article

Climate effects on US infrastructure: the economics of adaptation for rail, roads, and coastal development

Author

Listed:
  • James E. Neumann

    (Industrial Economics, Inc.)

  • Paul Chinowsky

    (Resilient Analytics, Inc. and University of Colorado)

  • Jacob Helman

    (Resilient Analytics, Inc. and University of Colorado)

  • Margaret Black

    (Industrial Economics, Inc.)

  • Charles Fant

    (Industrial Economics, Inc.)

  • Kenneth Strzepek

    (Industrial Economics, Inc.
    Massachusetts Institute of Technology)

  • Jeremy Martinich

    (U.S. Environmental Protection Agency)

Abstract

Changes in temperature, precipitation, sea level, and coastal storms will likely increase the vulnerability of infrastructure across the USA. Using models that analyze vulnerability, impacts, and adaptation, this paper estimates impacts to railroad, roads, and coastal properties under three infrastructure management response scenarios: No Adaptation; Reactive Adaptation, and Proactive Adaptation. Comparing damages under each of these potential responses provides strong support for facilitating effective adaptation in these three sectors. Under a high greenhouse gas emissions scenario and without adaptation, overall costs are projected to range in the $100s of billions annually by the end of this century. The first (reactive) tier of adaptation action, however, reduces costs by a factor of 10, and the second (proactive) tier reduces total costs across all three sectors to the low $10s of billions annually. For the rail and road sectors, estimated costs for Reactive and Proactive Adaptation scenarios capture a broader share of potential impacts, including selected indirect costs to rail and road users, and so are consistently about a factor of 2 higher than prior estimates. The results highlight the importance of considering climate risks in infrastructure planning and management.

Suggested Citation

  • James E. Neumann & Paul Chinowsky & Jacob Helman & Margaret Black & Charles Fant & Kenneth Strzepek & Jeremy Martinich, 2021. "Climate effects on US infrastructure: the economics of adaptation for rail, roads, and coastal development," Climatic Change, Springer, vol. 167(3), pages 1-23, August.
  • Handle: RePEc:spr:climat:v:167:y:2021:i:3:d:10.1007_s10584-021-03179-w
    DOI: 10.1007/s10584-021-03179-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03179-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03179-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Shane Underwood & Zack Guido & Padmini Gudipudi & Yarden Feinberg, 2017. "Increased costs to US pavement infrastructure from future temperature rise," Nature Climate Change, Nature, vol. 7(10), pages 704-707, October.
    2. Jeremy Martinich & James Neumann & Lindsay Ludwig & Lesley Jantarasami, 2013. "Risks of sea level rise to disadvantaged communities in the United States," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(2), pages 169-185, February.
    3. Steven J. Schuldt & Mathew R. Nicholson & Yaquarri A. Adams & Justin D. Delorit, 2021. "Weather-Related Construction Delays in a Changing Climate: A Systematic State-of-the-Art Review," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    4. Jeremy Martinich & Allison Crimmins, 2019. "Climate damages and adaptation potential across diverse sectors of the United States," Nature Climate Change, Nature, vol. 9(5), pages 397-404, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Brandão & Chelsea Weiskerger & Elisabete Valério & Tarja Pitkänen & Päivi Meriläinen & Lindsay Avolio & Christopher D. Heaney & Michael J. Sadowsky, 2022. "Climate Change Impacts on Microbiota in Beach Sand and Water: Looking Ahead," IJERPH, MDPI, vol. 19(3), pages 1-15, January.
    2. Nathan S. Debortoli & Tristan D. Pearce & James D. Ford, 2023. "Estimating Future Costs for Infrastructure in the Proposed Canadian Northern Corridor at Risk From Climate Change," SPP Research Papers, The School of Public Policy, University of Calgary, vol. 16(6), March.
    3. Ivan Petkov, 2023. "Public Investment in Hazard Mitigation: Effectiveness and the Role of Community Diversity," Economics of Disasters and Climate Change, Springer, vol. 7(1), pages 33-92, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    2. Kelsea Best & Qian He & Allison C. Reilly & Deb A. Niemeier & Mitchell Anderson & Tom Logan, 2023. "Demographics and risk of isolation due to sea level rise in the United States," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Fanny Groundstroem & Sirkku Juhola, 2021. "Using systems thinking and causal loop diagrams to identify cascading climate change impacts on bioenergy supply systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(7), pages 1-48, October.
    4. Anamaria Bukvic, 2015. "Integrated framework for the Relocation Potential Assessment of Coastal Communities (RPACC): application to Hurricane Sandy-affected areas," Environment Systems and Decisions, Springer, vol. 35(2), pages 264-278, June.
    5. Davide Ragni & Francesco Canestrari & Fatima Allou & Christophe Petit & Anne Millien, 2020. "Shear-Torque Fatigue Performance of Geogrid-Reinforced Asphalt Interlayers," Sustainability, MDPI, vol. 12(11), pages 1-21, May.
    6. Elizabeth A. Mack & Ethan Theuerkauf & Erin Bunting, 2020. "Coastal Typology: An Analysis of the Spatiotemporal Relationship between Socioeconomic Development and Shoreline Change," Land, MDPI, vol. 9(7), pages 1-18, July.
    7. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    8. Sierra Woodruff & Todd K. BenDor & Aaron L. Strong, 2018. "Fighting the inevitable: infrastructure investment and coastal community adaptation to sea level rise," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 48-77, January.
    9. Wojtek Szewczyk & Luc Feyen & Anca Matei & Juan Carlos Ciscar & Eamonn Mulholland & Antonio Soria, 2020. "Economic analysis of selected climate impacts. JRC PESETA IV project –Task 14," JRC Research Reports JRC120452, Joint Research Centre.
    10. A. R. Siders, 2019. "Social justice implications of US managed retreat buyout programs," Climatic Change, Springer, vol. 152(2), pages 239-257, January.
    11. Waqas Rafiq & Muhammad Ali Musarat & Muhammad Altaf & Madzlan Napiah & Muslich Hartadi Sutanto & Wesam Salah Alaloul & Muhammad Faisal Javed & Amir Mosavi, 2021. "Life Cycle Cost Analysis Comparison of Hot Mix Asphalt and Reclaimed Asphalt Pavement: A Case Study," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    12. Chae Yeon Park & Dong Kun Lee & Jung Hee Hyun, 2019. "The Effects of Extreme Heat Adaptation Strategies under Different Climate Change Mitigation Scenarios in Seoul, Korea," Sustainability, MDPI, vol. 11(14), pages 1-13, July.
    13. Vicki Marion Bier, 2017. "Understanding and Mitigating the Impacts of Massive Relocations Due to Disasters," Economics of Disasters and Climate Change, Springer, vol. 1(2), pages 179-202, July.
    14. Markolf, Samuel A. & Hoehne, Christopher & Fraser, Andrew & Chester, Mikhail V. & Underwood, B. Shane, 2019. "Transportation resilience to climate change and extreme weather events – Beyond risk and robustness," Transport Policy, Elsevier, vol. 74(C), pages 174-186.
    15. Burak Güneralp & İnci Güneralp & Cesar R. Castillo & Anthony M. Filippi, 2013. "Land Change in the Mission-Aransas Coastal Region, Texas: Implications for Coastal Vulnerability and Protected Areas," Sustainability, MDPI, vol. 5(10), pages 1-21, September.
    16. Sun, Jiayun & Chow, Aaron C.H. & Michel Madanat, Samer, 2022. "Tradeoffs between optimality and equity in transportation network protection against sea level rise," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 195-208.
    17. A. R. Siders & Idowu Ajibade, 2021. "Introduction: Managed retreat and environmental justice in a changing climate," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(3), pages 287-293, September.
    18. Liao, Hua & Ye, Huiying, 2023. "Endogenous economic structure, climate change, and the optimal abatement path," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 417-429.
    19. Na Huang & Jialin Wang & Yu Song & Yuying Pan & Guolin Han & Ziyuan Zhang & Shangqian Ma & Guofeng Sun & Cong Liu & Zhihua Pan, 2022. "The adaptation mechanism based on an integrated vulnerability assessment of potato production to climate change in Inner Mongolia, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-19, March.
    20. Meng Guo & Shukai Cai, 2022. "Impact of Green Innovation Efficiency on Carbon Peak: Carbon Neutralization under Environmental Governance Constraints," IJERPH, MDPI, vol. 19(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:167:y:2021:i:3:d:10.1007_s10584-021-03179-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.