IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i3d10.1007_s10584-020-02874-4.html
   My bibliography  Save this article

Effect of model calibration strategy on climate projections of hydrological indicators at a continental scale

Author

Listed:
  • Yeshewatesfa Hundecha

    (Swedish Meteorological and Hydrological Institute)

  • Berit Arheimer

    (Swedish Meteorological and Hydrological Institute)

  • Peter Berg

    (Swedish Meteorological and Hydrological Institute)

  • René Capell

    (Swedish Meteorological and Hydrological Institute)

  • Jude Musuuza

    (Swedish Meteorological and Hydrological Institute)

  • Ilias Pechlivanidis

    (Swedish Meteorological and Hydrological Institute)

  • Christiana Photiadou

    (Swedish Meteorological and Hydrological Institute)

Abstract

The effect of model calibration on the projection of climate change impact on hydrological indicators was assessed by employing variants of a pan-European hydrological model driven by forcing data from an ensemble of climate models. The hydrological model was calibrated using three approaches: calibration at the outlets of major river basins, regionalization through calibration of smaller scale catchments with unique catchment characteristics, and building a model ensemble by sampling model parameters from the regionalized model. The large-scale patterns of the change signals projected by all model variants were found to be similar for the different indicators. Catchment scale differences were observed between the projections of the model calibrated for the major river basins and the other two model variants. The distributions of the median change signals projected by the ensemble model were found to be similar to the distributions of the change signals projected by the regionalized model for all hydrological indicators. The study highlights that the spatial detail to which model calibration is performed can highly influence the catchment scale detail in the projection of climate change impact on hydrological indicators, with an absolute difference in the projections of the locally calibrated model and the model calibrated for the major river basins ranging between 0 and 55% for mean annual discharge, while it has little effect on the large-scale pattern of the projection.

Suggested Citation

  • Yeshewatesfa Hundecha & Berit Arheimer & Peter Berg & René Capell & Jude Musuuza & Ilias Pechlivanidis & Christiana Photiadou, 2020. "Effect of model calibration strategy on climate projections of hydrological indicators at a continental scale," Climatic Change, Springer, vol. 163(3), pages 1287-1306, December.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:3:d:10.1007_s10584-020-02874-4
    DOI: 10.1007/s10584-020-02874-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02874-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02874-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chantal Donnelly & Wouter Greuell & Jafet Andersson & Dieter Gerten & Giovanna Pisacane & Philippe Roudier & Fulco Ludwig, 2017. "Erratum to: Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level," Climatic Change, Springer, vol. 143(3), pages 535-535, August.
    2. Chantal Donnelly & Wouter Greuell & Jafet Andersson & Dieter Gerten & Giovanna Pisacane & Philippe Roudier & Fulco Ludwig, 2017. "Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level," Climatic Change, Springer, vol. 143(1), pages 13-26, July.
    3. I. G. Pechlivanidis & B. Arheimer & C. Donnelly & Y. Hundecha & S. Huang & V. Aich & L. Samaniego & S. Eisner & P. Shi, 2017. "Analysis of hydrological extremes at different hydro-climatic regimes under present and future conditions," Climatic Change, Springer, vol. 141(3), pages 467-481, April.
    4. B. Arheimer & C. Donnelly & G. Lindström, 2017. "Regulation of snow-fed rivers affects flow regimes more than climate change," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alice Baronetti & Vincent Dubreuil & Antonello Provenzale & Simona Fratianni, 2022. "Future droughts in northern Italy: high-resolution projections using EURO-CORDEX and MED-CORDEX ensembles," Climatic Change, Springer, vol. 172(3), pages 1-22, June.
    2. Gianluigi Busico & Maria Margarita Ntona & Sílvia C. P. Carvalho & Olga Patrikaki & Konstantinos Voudouris & Nerantzis Kazakis, 2021. "Simulating Future Groundwater Recharge in Coastal and Inland Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3617-3632, September.
    3. Yi Yang & Jianping Tang, 2023. "Downscaling and uncertainty analysis of future concurrent long-duration dry and hot events in China," Climatic Change, Springer, vol. 176(2), pages 1-25, February.
    4. Thibault Lemaitre-Basset & Ludovic Oudin & Guillaume Thirel, 2022. "Evapotranspiration in hydrological models under rising CO2: a jump into the unknown," Climatic Change, Springer, vol. 172(3), pages 1-19, June.
    5. Muhammad Ishfaque & Qianwei Dai & Nuhman ul Haq & Khanzaib Jadoon & Syed Muzyan Shahzad & Hammad Tariq Janjuhah, 2022. "Use of Recurrent Neural Network with Long Short-Term Memory for Seepage Prediction at Tarbela Dam, KP, Pakistan," Energies, MDPI, vol. 15(9), pages 1-16, April.
    6. Charlotte Poussin & Yaniss Guigoz & Elisa Palazzi & Silvia Terzago & Bruno Chatenoux & Gregory Giuliani, 2019. "Snow Cover Evolution in the Gran Paradiso National Park, Italian Alps, Using the Earth Observation Data Cube," Data, MDPI, vol. 4(4), pages 1-25, October.
    7. Si Xie & Tianshu Li & Ke Cao, 2023. "Analysis of the Impact of Carbon Emission Control on Urban Economic Indicators based on the Concept of Green Economy under Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    8. Rejani Raghavan & Kondru Venkateswara Rao & Maheshwar Shivashankar Shirahatti & Duvvala Kalyana Srinivas & Kotha Sammi Reddy & Gajjala Ravindra Chary & Kodigal A. Gopinath & Mohammed Osman & Mathyam P, 2022. "Assessment of Spatial and Temporal Variations in Runoff Potential under Changing Climatic Scenarios in Northern Part of Karnataka in India Using Geospatial Techniques," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    9. Buddhi Wijesiri & Erick Bandala & An Liu & Ashantha Goonetilleke, 2020. "A Framework for Stormwater Quality Modelling under the Effects of Climate Change to Enhance Reuse," Sustainability, MDPI, vol. 12(24), pages 1-12, December.
    10. Renata Graf & Viktor Vyshnevskyi, 2022. "Forecasting Monthly River Flows in Ukraine under Different Climatic Conditions," Resources, MDPI, vol. 11(12), pages 1-24, November.
    11. Zhang, Xiao & Li, Hong-Yi & Deng, Zhiqun D. & Leung, L. Ruby & Skalski, John R. & Cooke, Steven J., 2019. "On the variable effects of climate change on Pacific salmon," Ecological Modelling, Elsevier, vol. 397(C), pages 95-106.
    12. Yinmao Zhao & Zhansheng Li & Siyu Cai & Hao Wang, 2020. "Characteristics of extreme precipitation and runoff in the Xijiang River Basin at global warming of 1.5 °C and 2 °C," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 669-688, April.
    13. Srishti Gaur & Arnab Bandyopadhyay & Rajendra Singh, 2021. "From Changing Environment to Changing Extremes: Exploring the Future Streamflow and Associated Uncertainties Through Integrated Modelling System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1889-1911, April.
    14. Nina Rholan Houngue & Adrian Delos Santos Almoradie & Sophie Thiam & Kossi Komi & Julien G. Adounkpè & Komi Begedou & Mariele Evers, 2023. "Climate and Land-Use Change Impacts on Flood Hazards in the Mono River Catchment of Benin and Togo," Sustainability, MDPI, vol. 15(7), pages 1-31, March.
    15. Shaochun Huang & Harsh Shah & Bibi S. Naz & Narayan Shrestha & Vimal Mishra & Prasad Daggupati & Uttam Ghimire & Tobias Vetter, 2020. "Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins," Climatic Change, Springer, vol. 163(3), pages 1143-1164, December.
    16. Hadi Galavi & Majid Mirzaei, 2020. "Analyzing Uncertainty Drivers of Climate Change Impact Studies in Tropical and Arid Climates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 2097-2109, April.
    17. Hadush Meresa & Bernhard Tischbein & Tewodros Mekonnen, 2022. "Climate change impact on extreme precipitation and peak flood magnitude and frequency: observations from CMIP6 and hydrological models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2649-2679, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:3:d:10.1007_s10584-020-02874-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.