IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i2d10.1007_s10584-020-02933-w.html
   My bibliography  Save this article

Warmer incubation temperature influences sea turtle survival and nullifies the benefit of a female-biased sex ratio

Author

Listed:
  • Samir Martins

    (BIOS.CV - Conservation of the Environment and Sustainable Development
    University of Algarve)

  • Elton Silva

    (BIOS.CV - Conservation of the Environment and Sustainable Development)

  • Elena Abella

    (BIOS.CV - Conservation of the Environment and Sustainable Development)

  • Nuno Santos Loureiro

    (University of Algarve)

  • Adolfo Marco

    (BIOS.CV - Conservation of the Environment and Sustainable Development
    Estación Biológica de Doñana)

Abstract

Climate change plays a key role in the development and survival of oviparous ectotherms such as sea turtles. Higher environmental temperatures are expected to lead to increased production of female hatchlings and potential feminization of many populations, as well as reduced hatching success and hatchling fitness. We investigated how different sand temperatures affect sea turtle embryo mortality, hatchling phenotype, and hatchling predation during their crawl to the sea. The study was conducted in Cabo Verde, the only rookery of the endangered loggerhead turtle (Caretta caretta) in the Eastern Atlantic. During three consecutive seasons (2015–2017), 240 loggerhead clutches were exposed to three different incubation temperature regimes created by different sand colours. The warm treatment (mean = 32.3 °C ± 0.5) killed 33% more embryos than the cold treatment (mean = 29.7 °C ± 0.6). Hatchlings from the warm treatment were mostly females, smaller in size, and had lower performance. Hatchling predation by ghost crabs during seaward transit was higher for hatchlings incubated in the warm treatment. Combining embryo mortality and hatchling predation, the rate of female hatchling arrival at the sea was more than twice as high in the cold treatment (34.4 females per 100 eggs) than in the warm treatment (16.0 females per 100 eggs). This increase in mortality caused by warmer incubation temperatures may cancel any potential benefit of a female-biased sex ratio. Conservation planners should consider behavioural adaptations and the potential dispersal of the nesting areas to colder areas to increase resilience of loggerhead turtles to climate change.

Suggested Citation

  • Samir Martins & Elton Silva & Elena Abella & Nuno Santos Loureiro & Adolfo Marco, 2020. "Warmer incubation temperature influences sea turtle survival and nullifies the benefit of a female-biased sex ratio," Climatic Change, Springer, vol. 163(2), pages 689-704, November.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:2:d:10.1007_s10584-020-02933-w
    DOI: 10.1007/s10584-020-02933-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02933-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02933-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeileis, Achim & Kleiber, Christian & Jackman, Simon, 2008. "Regression Models for Count Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i08).
    2. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    3. Jacques-Olivier Laloë & Jacquie Cozens & Berta Renom & Albert Taxonera & Graeme C. Hays, 2014. "Effects of rising temperature on the viability of an important sea turtle rookery," Nature Climate Change, Nature, vol. 4(6), pages 513-518, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyndsey L.K. Tanabe & Marion Steenacker & Mohd Uzair Rusli & Michael M.L. Berumen, 2021. "Implications of nest relocation for morphology and locomotor performance of green turtle (Chelonia mydas) hatchlings," ULB Institutional Repository 2013/349985, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thanapong Champahom & Sajjakaj Jomnonkwao & Chinnakrit Banyong & Watanya Nambulee & Ampol Karoonsoontawong & Vatanavongs Ratanavaraha, 2021. "Analysis of Crash Frequency and Crash Severity in Thailand: Hierarchical Structure Models Approach," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    2. Susanne Berger & Nathaniel Graham & Achim Zeileis, 2017. "Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R," Working Papers 2017-12, Faculty of Economics and Statistics, Universität Innsbruck.
    3. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    4. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    5. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    6. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    8. Totterman, Stephen, 2021. "Vehicle-based recreation and compliance for three beaches in northern New South Wales," OSF Preprints ja8h6, Center for Open Science.
    9. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    12. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    14. repec:cup:judgdm:v:16:y:2021:i:1:p:201-237 is not listed on IDEAS
    15. C. Gabriel Hidalgo Pizango & Eurídice N. Honorio Coronado & Jhon del Águila-Pasquel & Gerardo Flores Llampazo & Johan de Jong & César J. Córdova Oroche & José M. Reyna Huaymacari & Steve J. Carver & D, 2022. "Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests," Nature Sustainability, Nature, vol. 5(6), pages 479-487, June.
    16. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    17. Szefer Elena & Graham Jinko & Lu Donghuan & Beg Mirza Faisal & Nathoo Farouk, 2017. "Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 349-365, December.
    18. Julien Collet & Samantha C Patrick & Henri Weimerskirch, 2017. "A comparative analysis of the behavioral response to fishing boats in two albatross species," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(5), pages 1337-1347.
    19. Sean Coogan & Zhixian Sui & David Raubenheimer, 2018. "Gluttony and guilt: monthly trends in internet search query data are comparable with national-level energy intake and dieting behavior," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.
    20. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    21. Sewando, Ponsian T. & Mdoe, N. Y. S. & Mutabazi, K. D. S, 2011. "Farmers’ preferential choice decisions to alternative cassava value chain strands in Morogoro rural district, Tanzania," MPRA Paper 29797, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:2:d:10.1007_s10584-020-02933-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.