IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41648-1.html
   My bibliography  Save this article

Time-dependent memory transformation in hippocampus and neocortex is semantic in nature

Author

Listed:
  • Valentina Krenz

    (Universität Hamburg)

  • Arjen Alink

    (Universität Hamburg
    University Medical Centre Hamburg-Eppendorf)

  • Tobias Sommer

    (University Medical Centre Hamburg-Eppendorf)

  • Benno Roozendaal

    (Radboud University Medical Center
    Radboud University)

  • Lars Schwabe

    (Universität Hamburg)

Abstract

Memories undergo a time-dependent neural reorganization, which is assumed to be accompanied by a transformation from detailed to more gist-like memory. However, the nature of this transformation and its underlying neural mechanisms are largely unknown. Here, we report that the time-dependent transformation of memory is semantic in nature, while we find no credible evidence for a perceptual transformation. Model-based MRI analyses reveal time-dependent increases in semantically transformed representations of events in prefrontal and parietal cortices, while specific pattern representations in the anterior hippocampus decline over time. Posterior hippocampal memory reinstatement, in turn, increases over time and is linked to the semantic gist of the original memory, without a statistically significant link to perceptual details. These findings indicate that qualitative changes in memory over time, associated with distinct representational changes in the neocortex and within the hippocampus, reflect a semantic transformation, which may promote the integration of memories into abstract knowledge structures.

Suggested Citation

  • Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41648-1
    DOI: 10.1038/s41467-023-41648-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41648-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41648-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jörn Diedrichsen & Nikolaus Kriegeskorte, 2017. "Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-33, April.
    2. Valentina Krenz & Tobias Sommer & Arjen Alink & Benno Roozendaal & Lars Schwabe, 2021. "Noradrenergic arousal after encoding reverses the course of systems consolidation in humans," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    4. Lisa C. Dandolo & Lars Schwabe, 2018. "Time-dependent memory transformation along the hippocampal anterior–posterior axis," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    5. Hamed Nili & Cai Wingfield & Alexander Walther & Li Su & William Marslen-Wilson & Nikolaus Kriegeskorte, 2014. "A Toolbox for Representational Similarity Analysis," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentina Krenz & Tobias Sommer & Arjen Alink & Benno Roozendaal & Lars Schwabe, 2021. "Noradrenergic arousal after encoding reverses the course of systems consolidation in humans," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Ming Bo Cai & Nicolas W Schuck & Jonathan W Pillow & Yael Niv, 2019. "Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-30, May.
    3. Sam Audrain & Mary Pat McAndrews, 2022. "Schemas provide a scaffold for neocortical integration of new memories over time," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    5. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    6. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    7. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    8. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    11. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    13. repec:cup:judgdm:v:16:y:2021:i:1:p:201-237 is not listed on IDEAS
    14. C. Gabriel Hidalgo Pizango & Eurídice N. Honorio Coronado & Jhon del Águila-Pasquel & Gerardo Flores Llampazo & Johan de Jong & César J. Córdova Oroche & José M. Reyna Huaymacari & Steve J. Carver & D, 2022. "Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests," Nature Sustainability, Nature, vol. 5(6), pages 479-487, June.
    15. Szefer Elena & Graham Jinko & Lu Donghuan & Beg Mirza Faisal & Nathoo Farouk, 2017. "Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 349-365, December.
    16. Julien Collet & Samantha C Patrick & Henri Weimerskirch, 2017. "A comparative analysis of the behavioral response to fishing boats in two albatross species," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(5), pages 1337-1347.
    17. Sean Coogan & Zhixian Sui & David Raubenheimer, 2018. "Gluttony and guilt: monthly trends in internet search query data are comparable with national-level energy intake and dieting behavior," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.
    18. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    19. Katrijn Delaruelle, 2023. "Migration-related inequalities in loneliness across age groups: a cross-national comparative study in Europe," European Journal of Ageing, Springer, vol. 20(1), pages 1-17, December.
    20. Christos C Ioannou & Luis Arrochela Braga Carvalho & Chessy Budleigh & Graeme D Ruxton, 2023. "Virtual prey with Lévy motion are preferentially attacked by predatory fish," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(4), pages 695-699.
    21. Vonneilich, Nico & Lüdecke, Daniel & von dem Knesebeck, Olaf, 2020. "Educational inequalities in self-rated health and social relationships – analyses based on the European Social Survey 2002-2016," Social Science & Medicine, Elsevier, vol. 267(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41648-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.