IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v151y2018i2d10.1007_s10584-018-2278-z.html
   My bibliography  Save this article

Climate change implications for irrigation and groundwater in the Republican River Basin, USA

Author

Listed:
  • Gengxin Ou

    (University of Nebraska–Lincoln)

  • Francisco Munoz-Arriola

    (University of Nebraska–Lincoln
    University of Nebraska–Lincoln)

  • Daniel R. Uden

    (University of Nebraska–Lincoln)

  • Derrel Martin

    (University of Nebraska–Lincoln)

  • Craig R. Allen

    (University of Nebraska–Lincoln)

  • Nancy Shank

    (University of Nebraska)

Abstract

This study investigates the influence of climate change on groundwater availability, and thereby, irrigation across political boundaries within the US High Plains aquifer. A regression model is developed to predict changes in irrigation according to predicted changes in precipitation and temperature from a downscaled dataset of 32 general circulation models (GCMs). Precipitation recharge changes are calculated with precipitation-recharge curves developed for prognostic representations of precipitation across the Nebraska-Colorado-Kansas area and within the Republican River Basin focal landscape. Irrigation-recharge changes are scaled with changes in irrigation. The groundwater responses to climate forcings are then simulated under new pumping and recharge rates using a MODFLOW groundwater flow model. Results show that groundwater pumping and recharge both will increase and that the effects of groundwater pumping will overshadow those from natural fluctuations. Groundwater levels will decline more in areas with irrigation-driven decreasing trends in the baseline. The methodologies and predictions of this study can inform long-term water planning and the design of management strategies that help avoid and resolve water-related conflicts, enabling irrigation sustainability.

Suggested Citation

  • Gengxin Ou & Francisco Munoz-Arriola & Daniel R. Uden & Derrel Martin & Craig R. Allen & Nancy Shank, 2018. "Climate change implications for irrigation and groundwater in the Republican River Basin, USA," Climatic Change, Springer, vol. 151(2), pages 303-316, November.
  • Handle: RePEc:spr:climat:v:151:y:2018:i:2:d:10.1007_s10584-018-2278-z
    DOI: 10.1007/s10584-018-2278-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2278-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2278-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karimov, A. & Smakhtin, V. & Mavlonov, A. & Gracheva, I., 2010. "Water 'banking' in Fergana valley aquifers--A solution to water allocation in the Syrdarya river basin?," Agricultural Water Management, Elsevier, vol. 97(10), pages 1461-1468, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel R. Uden & Craig R. Allen & Francisco Munoz-Arriola & Gengxin Ou & Nancy Shank, 2018. "A Framework for Tracing Social–Ecological Trajectories and Traps in Intensive Agricultural Landscapes," Sustainability, MDPI, vol. 10(5), pages 1-14, May.
    2. Whittemore, Donald O. & Butler, James J. & Bohling, Geoffrey C. & Wilson, Blake B., 2023. "Are we saving water? Simple methods for assessing the effectiveness of groundwater conservation measures," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimov, Akmal & Gracheva, I. & Miryusupov, F., 2010. "Modeling the managed aquifer recharge for groundwater salinity management in the Sokh River Basin," Conference Papers h043327, International Water Management Institute.
    2. Karimov, A. & Molden, D. & Khamzina, T. & Platonov, A. & Ivanov, Yu., 2012. "A water accounting procedure to determine the water savings potential of the Fergana Valley," Agricultural Water Management, Elsevier, vol. 108(C), pages 61-72.
    3. Ibrakhimov, Mirzakhayot & Awan, Usman Khalid & George, Biju & Liaqat, Umar Waqas, 2018. "Understanding surface water–groundwater interactions for managing large irrigation schemes in the multi-country Fergana valley, Central Asia," Agricultural Water Management, Elsevier, vol. 201(C), pages 99-106.
    4. Alexandra Nikanorova & Nikolai Dronin, 2017. "Optimal Future for the Irrigation Agriculture Under Climate Change in the Fergana Valley,Central Asia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 3(2), pages 28-35, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:151:y:2018:i:2:d:10.1007_s10584-018-2278-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.