IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v129y2015i1p159-181.html
   My bibliography  Save this article

Mapping agricultural vulnerability of Tamil Nadu, India to climate change: a dynamic approach to take forward the vulnerability assessment methodology

Author

Listed:
  • R. Varadan
  • Pramod Kumar

Abstract

Vulnerability of a system is determined not only by the severity of climate change that occurs over the system but also by the system’s own sensitivity and adaptive capacity to cope with new change in climatic condition. This study while examining the agricultural vulnerability of Tamil Nadu State in India to climate change, tries to improve upon the vulnerability assessment methodology. It chooses the growth and instability of certain performance indicators to capture the relative vulnerability positioning of the districts of Tamil Nadu. The normalized indicators are assigned weights based on the proportional acreage of major crops in each district with respect to the State. The weighted component indicators are then aggregated into a single index by merely adding them. In addition this study also categorizes the districts beyond ranking to have a meaningful characterization of the different stages of vulnerability. The results thus obtained reveal the fact that all districts in an agro climatic zone does not fall under the same category of vulnerability which exemplifies the need for the State to prioritize research and development issues and effective decision making through “Location-Performance-Vulnerability” based adaptation strategies. In doing so, one must take into account the local community’s understanding of climate change Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • R. Varadan & Pramod Kumar, 2015. "Mapping agricultural vulnerability of Tamil Nadu, India to climate change: a dynamic approach to take forward the vulnerability assessment methodology," Climatic Change, Springer, vol. 129(1), pages 159-181, March.
  • Handle: RePEc:spr:climat:v:129:y:2015:i:1:p:159-181
    DOI: 10.1007/s10584-015-1327-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1327-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1327-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heltberg, Rasmus & Bonch-Osmolovskiy, Misha, 2011. "Mapping vulnerability to climate change," Policy Research Working Paper Series 5554, The World Bank.
    2. Deressa, Temesgen & Hassan, Rashid M. & Ringler, Claudia, 2008. "Measuring Ethiopian farmers' vulnerability to climate change across regional states:," IFPRI discussion papers 806, International Food Policy Research Institute (IFPRI).
    3. Patnaik, Unmesh & Narayanan, K., 2009. "Vulnerability and Climate Change: An Analysis of the Eastern Coastal Districts of India," MPRA Paper 22062, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Torsten Grothmann & Maximilian Petzold & Patrick Ndaki & Vincent Kakembo & Bernd Siebenhüner & Michael Kleyer & Pius Yanda & Naledzani Ndou, 2017. "Vulnerability Assessment in African Villages under Conditions of Land Use and Climate Change: Case Studies from Mkomazi and Keiskamma," Sustainability, MDPI, vol. 9(6), pages 1-30, June.
    2. Priyanka Singh & Mini Goyal & Bishwa Bhaskar Choudhary, 2022. "How sustainable is food system in India? mapping evidence from the state of Punjab," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14348-14374, December.
    3. Terese E. Venus & Stephanie Bilgram & Johannes Sauer & Arun Khatri-Chettri, 2022. "Livelihood vulnerability and climate change: a comparative analysis of smallholders in the Indo-Gangetic plains," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1981-2009, February.
    4. Chang, Yu-Tsun & Lee, Ying-Chieh & Huang, Shu-Li, 2017. "Integrated spatial ecosystem model for simulating land use change and assessing vulnerability to flooding," Ecological Modelling, Elsevier, vol. 362(C), pages 87-100.
    5. Ognjen Žurovec & Sabrija Čadro & Bishal Kumar Sitaula, 2017. "Quantitative Assessment of Vulnerability to Climate Change in Rural Municipalities of Bosnia and Herzegovina," Sustainability, MDPI, vol. 9(7), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bishwa Bhaskar Choudhary & Smita Sirohi, 2022. "Understanding vulnerability of agricultural production system to climatic stressors in North Indian Plains: a meso-analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13522-13541, December.
    2. Aavudai Anandhi & Jean L. Steiner & Nathaniel Bailey, 2016. "A system’s approach to assess the exposure of agricultural production to climate change and variability," Climatic Change, Springer, vol. 136(3), pages 647-659, June.
    3. Thecla I. Akukwe & Chinedu Ogbodo, 2015. "Spatial Analysis of Vulnerability to Flooding in Port Harcourt Metropolis, Nigeria," SAGE Open, , vol. 5(1), pages 21582440155, March.
    4. Ricky P. Laureta & Ric Ryan H. Regalado & Ermar B. De La Cruz, 2021. "Climate vulnerability scenario of the agricultural sector in the Bicol River Basin, Philippines," Climatic Change, Springer, vol. 168(1), pages 1-18, September.
    5. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    6. Lerman, Zvi & Wolfgramm, Bettina, 2011. "Land use policies and practices for reducing vulnerability in rural Tajikistan," Discussion Papers 119834, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    7. Gebreegziabher, Zenebe & Stage, Jesper & Mekonnen, Alemu & Alemu, Atlaw, 2011. "Climate Change and the Ethiopian Economy: A Computable General Equilibrium Analysis," RFF Working Paper Series dp-11-09-efd, Resources for the Future.
    8. Ojo, T.O. & Baiyegunhi, L.J.S., 2020. "Determinants of climate change adaptation strategies and its impact on the net farm income of rice farmers in south-west Nigeria," Land Use Policy, Elsevier, vol. 95(C).
    9. Fahad, Shah & Wang, Jianling, 2018. "Farmers’ risk perception, vulnerability, and adaptation to climate change in rural Pakistan," Land Use Policy, Elsevier, vol. 79(C), pages 301-309.
    10. Das, Usha & Ansari, M.A. & Ghosh, Souvik, 2022. "Effectiveness and upscaling potential of climate smart agriculture interventions: Farmers' participatory prioritization and livelihood indicators as its determinants," Agricultural Systems, Elsevier, vol. 203(C).
    11. Md Golam Azam & Md Mujibor Rahman, 2022. "Assessing spatial vulnerability of Bangladesh to climate change and extremes: a geographic information system approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-35, August.
    12. Gbetibouo, Glwadys Aymone & Ringler, Claudia, 2009. "Mapping South African farming sector vulnerability to climate change and variability: A subnational assessment," IFPRI discussion papers 885, International Food Policy Research Institute (IFPRI).
    13. G. Sridevi & A. Jyotishi & S. Mahapatra & G. Jagadeesh & S. Bedamatta, 2014. "Climate Change Vulnerability in Agriculture Sector: Indexing and Mapping of Four Southern Indian States," Working Papers wp966, Dipartimento Scienze Economiche, Universita' di Bologna.
    14. Mintewab Bezabih & Abe Damte Beyene & Zenebe Gebreegziabher & Livousew Borga, 2013. "Social Capital, climate change and soil conservation investment: panel data evidence from the Highlands of Ethiopia," GRI Working Papers 115, Grantham Research Institute on Climate Change and the Environment.
    15. Devendraraj Madhanagopal & Sarmistha Pattanaik, 2020. "Exploring fishermen’s local knowledge and perceptions in the face of climate change: the case of coastal Tamil Nadu, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3461-3489, April.
    16. Makate, Clifton & Angelsen, Arild & Holden, Stein Terje & Westengen, Ola Tveitereid, 2022. "Crops in crises: Shocks shape smallholders' diversification in rural Ethiopia," World Development, Elsevier, vol. 159(C).
    17. Patnaik, Unmesh & Das, Prasun Kumar, 2017. "Do Development Interventions Confer Adaptive Capacity? Insights from Rural India," World Development, Elsevier, vol. 97(C), pages 298-312.
    18. Hiremath, Deepa B. & Shiyani, R.L., 2012. "Evaluating Regional Vulnerability to Climate Change: A Case of Saurashtra," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 67(3), pages 1-11.
    19. Hiremath, Deepa B. & Shiyani, R.L., 2013. "Research Note: Analysis of Vulnerability Indices in Various Agro-Climatic Zones of Gujarat," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 68(1), pages 1-16.
    20. Md Aboul Fazal Younus & Md Alamgir Kabir, 2018. "Climate Change Vulnerability Assessment and Adaptation of Bangladesh: Mechanisms, Notions and Solutions," Sustainability, MDPI, vol. 10(11), pages 1-17, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:129:y:2015:i:1:p:159-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.