IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v115y2012i3p893-902.html
   My bibliography  Save this article

Toward a physically plausible upper bound of sea-level rise projections

Author

Listed:
  • Ryan Sriver
  • Nathan Urban
  • Roman Olson
  • Klaus Keller

Abstract

Anthropogenic sea-level rise (SLR) causes considerable risks. Designing a sound SLR risk-management strategy requires careful consideration of decision-relevant uncertainties such as the reasonable upper bound of future SLR. The recent Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment reported a likely upper SLR bound in the year 2100 near 0.6 m (meter). More recent studies considering semi-empirical modeling approaches and kinematic constraints on glacial melting suggest a reasonable 2100 SLR upper bound of approximately 2 m. These recent studies have broken important new ground, but they largely neglect uncertainties surrounding thermal expansion (thermosteric SLR) and/or observational constraints on ocean heat uptake. Here we quantify the effects of key parametric uncertainties and observational constraints on thermosteric SLR projections using an Earth system model with a dynamic three-dimensional ocean, which provides a mechanistic representation of deep ocean processes and heat uptake. Considering these effects nearly doubles the contribution of thermosteric SLR compared to previous estimates and increases the reasonable upper bound of 2100 SLR projections by 0.25 m. As an illustrative example of the effect of overconfidence, we show how neglecting thermosteric uncertainty in projections of the SLR upper bound can considerably bias risk analysis and hence the design of adaptation strategies. For conditions close to the Port of Los Angeles, the 0.25 m increase in the reasonable upper bound can result in a flooding-risk increase by roughly three orders of magnitude. Results provide evidence that relatively minor underestimation of the upper bound of projected SLR can lead to major downward biases of future flooding risks. Copyright Springer Science+Business Media Dordrecht 2012

Suggested Citation

  • Ryan Sriver & Nathan Urban & Roman Olson & Klaus Keller, 2012. "Toward a physically plausible upper bound of sea-level rise projections," Climatic Change, Springer, vol. 115(3), pages 893-902, December.
  • Handle: RePEc:spr:climat:v:115:y:2012:i:3:p:893-902
    DOI: 10.1007/s10584-012-0610-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0610-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0610-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reto Knutti & Thomas F. Stocker & Fortunat Joos & Gian-Kasper Plattner, 2002. "Constraints on radiative forcing and future climate change from observations and climate model ensembles," Nature, Nature, vol. 416(6882), pages 719-723, April.
    2. Catia M. Domingues & John A. Church & Neil J. White & Peter J. Gleckler & Susan E. Wijffels & Paul M. Barker & Jeff R. Dunn, 2008. "Improved estimates of upper-ocean warming and multi-decadal sea-level rise," Nature, Nature, vol. 453(7198), pages 1090-1093, June.
    3. Thomas Jacob & John Wahr & W. Tad Pfeffer & Sean Swenson, 2012. "Recent contributions of glaciers and ice caps to sea level rise," Nature, Nature, vol. 482(7386), pages 514-518, February.
    4. Ning Lin & Kerry Emanuel & Michael Oppenheimer & Erik Vanmarcke, 2012. "Physically based assessment of hurricane surge threat under climate change," Nature Climate Change, Nature, vol. 2(6), pages 462-467, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    2. Edyta Kiedrzyńska & Marcin Kiedrzyński & Maciej Zalewski, 2015. "Sustainable floodplain management for flood prevention and water quality improvement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 955-977, March.
    3. Yuki Miura & Huda Qureshi & Chanyang Ryoo & Philip C. Dinenis & Jiao Li & Kyle T. Mandli & George Deodatis & Daniel Bienstock & Heather Lazrus & Rebecca Morss, 2021. "A methodological framework for determining an optimal coastal protection strategy against storm surges and sea level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1821-1843, June.
    4. Byungdoo Kim & David L. Kay & Jonathon P. Schuldt, 2021. "Will I have to move because of climate change? Perceived likelihood of weather- or climate-related relocation among the US public," Climatic Change, Springer, vol. 165(1), pages 1-8, March.
    5. Muhammad Arfan & Jewell Lund & Daniyal Hassan & Maaz Saleem & Aftab Ahmad, 2019. "Assessment of Spatial and Temporal Flow Variability of the Indus River," Resources, MDPI, vol. 8(2), pages 1-17, May.
    6. Junli Xu & Yuhong Zhang & Xianqing Lv & Qiang Liu, 2019. "Inversion of Wind-Stress Drag Coefficient in Simulating Storm Surges by Means of Regularization Technique," IJERPH, MDPI, vol. 16(19), pages 1-16, September.
    7. Mort Webster, 2009. "Uncertainty and the IPCC. An editorial comment," Climatic Change, Springer, vol. 92(1), pages 37-40, January.
    8. Ceferino, Luis & Lin, Ning & Xi, Dazhi, 2023. "Bayesian updating of solar panel fragility curves and implications of higher panel strength for solar generation resilience," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. A. Lopez & E. Suckling & F. Otto & A. Lorenz & D. Rowlands & M. Allen, 2015. "Towards a typology for constrained climate model forecasts," Climatic Change, Springer, vol. 132(1), pages 15-29, September.
    10. Austin Becker & Michele Acciaro & Regina Asariotis & Edgard Cabrera & Laurent Cretegny & Philippe Crist & Miguel Esteban & Andrew Mather & Steve Messner & Susumu Naruse & Adolf Ng & Stefan Rahmstorf &, 2013. "A note on climate change adaptation for seaports: a challenge for global ports, a challenge for global society," Climatic Change, Springer, vol. 120(4), pages 683-695, October.
    11. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    12. Zhuo Zhang & Changsheng Chen & Zhiyao Song & Dong Zhang & Di Hu & Fei Guo, 2020. "A FVCOM study of the potential coastal flooding in apponagansett bay and clarks cove, Dartmouth Town (MA)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2787-2809, September.
    13. John Halley & Dimitris Kugiumtzis, 2011. "Nonparametric testing of variability and trend in some climatic records," Climatic Change, Springer, vol. 109(3), pages 549-568, December.
    14. Barbora Šedová & Lucia Čizmaziová & Athene Cook, 2021. "A meta-analysis of climate migration literature," CEPA Discussion Papers 29, Center for Economic Policy Analysis.
    15. James Neumann & Kerry Emanuel & Sai Ravela & Lindsay Ludwig & Paul Kirshen & Kirk Bosma & Jeremy Martinich, 2015. "Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy," Climatic Change, Springer, vol. 129(1), pages 337-349, March.
    16. Lee, Ji Yun & Ellingwood, Bruce R., 2017. "A decision model for intergenerational life-cycle risk assessment of civil infrastructure exposed to hurricanes under climate change," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 100-107.
    17. Wilmer Rey & E. Tonatiuh Mendoza & Paulo Salles & Keqi Zhang & Yi-Chen Teng & Miguel A. Trejo-Rangel & Gemma L. Franklin, 2019. "Hurricane flood risk assessment for the Yucatan and Campeche State coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1041-1065, April.
    18. Anamaria Bukvic, 2019. "Visualizing the Possibility of Relocation: Coastal Relocation Leaf," Social Sciences, MDPI, vol. 8(6), pages 1-12, June.
    19. Jennifer Irish & Alison Sleath & Mary Cialone & Thomas Knutson & Robert Jensen, 2014. "Simulations of Hurricane Katrina (2005) under sea level and climate conditions for 1900," Climatic Change, Springer, vol. 122(4), pages 635-649, February.
    20. P. M. Orton & F. R. Conticello & F. Cioffi & T. M. Hall & N. Georgas & U. Lall & A. F. Blumberg & K. MacManus, 2020. "Flood hazard assessment from storm tides, rain and sea level rise for a tidal river estuary," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(2), pages 729-757, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:115:y:2012:i:3:p:893-902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.