IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v247y2016i1d10.1007_s10479-015-1849-x.html
   My bibliography  Save this article

On a queueing-inventory with reservation, cancellation, common life time and retrial

Author

Listed:
  • A. Krishnamoorthy

    (Cochin University of Science and Technology)

  • Dhanya Shajin

    (Cochin University of Science and Technology)

  • B. Lakshmy

    (Cochin University of Science and Technology)

Abstract

In this paper we model a queueing-inventory system that has applications in railway and airline reservation systems. Maximum items in the inventory is $$S$$ S which have a random common life time; this includes those that are sold in particular cycle. A customer, on arrival to an idle server with at least one item in inventory, is immediately taken for service; or else he joins the buffer of maximum size $$S$$ S depending on number of items in the inventory (the buffer capacity varies and is, at any time, equal to the number of items in the inventory). The arrival of customers constitutes a Poisson process, demanding exactly one item each from the inventory. If there is no item in the inventory, the arriving customer first queue up in a finite waiting space of capacity $$K$$ K . When it overflows an arrival goes to an orbit of infinite capacity with probability $$p$$ p or is lost forever with probability $$1-p$$ 1 - p . From the orbit he retries for service according to an exponentially distributed inter-occurrence time. The service time follows an exponential distribution. Cancellation of sold items before its expiry is permitted. Inventory gets added through cancellation of purchased items, until the expiry time. Cancellation time is assumed to be negligible. We analyze this system. Several performance characteristics are computed; expected sojourn time of the system in a cycle with “no inventory” and also “maximum inventory” are computed. Some illustrative numerical examples are presented. An optimization problem is numerically analyzed.

Suggested Citation

  • A. Krishnamoorthy & Dhanya Shajin & B. Lakshmy, 2016. "On a queueing-inventory with reservation, cancellation, common life time and retrial," Annals of Operations Research, Springer, vol. 247(1), pages 365-389, December.
  • Handle: RePEc:spr:annopr:v:247:y:2016:i:1:d:10.1007_s10479-015-1849-x
    DOI: 10.1007/s10479-015-1849-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-1849-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-1849-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Deepak & V. Joshua & A. Krishnamoorthy, 2004. "Queues with postponed work," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(2), pages 375-398, December.
    2. Maike Schwarz & Hans Daduna, 2006. "Queueing systems with inventory management with random lead times and with backordering," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(3), pages 383-414, December.
    3. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    4. Zhaotong Lian & Liming Liu & Marcel F. Neuts, 2005. "A Discrete-Time Model for Common Lifetime Inventory Systems," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 718-732, August.
    5. Steven Nahmias & W. Steven Demmy, 1981. "Operating Characteristics of an Inventory System with Rationing," Management Science, INFORMS, vol. 27(11), pages 1236-1245, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sha, Yue & Zhang, Junlong & Cao, Hui, 2021. "Multistage stochastic programming approach for joint optimization of job scheduling and material ordering under endogenous uncertainties," European Journal of Operational Research, Elsevier, vol. 290(3), pages 886-900.
    2. Dhanya Shajin & A. Krishnamoorthy, 2021. "On a queueing-inventory system with impatient customers, advanced reservation, cancellation, overbooking and common life time," Operational Research, Springer, vol. 21(2), pages 1229-1253, June.
    3. Dhanya Shajin & A. Krishnamoorthy & A. N. Dudin & Varghese C. Joshua & Varghese Jacob, 2020. "On a queueing-inventory system with advanced reservation and cancellation for the next K time frames ahead: the case of overbooking," Queueing Systems: Theory and Applications, Springer, vol. 94(1), pages 3-37, February.
    4. Fathi, Mahdi & Khakifirooz, Marzieh & Diabat, Ali & Chen, Huangen, 2021. "An integrated queuing-stochastic optimization hybrid Genetic Algorithm for a location-inventory supply chain network," International Journal of Production Economics, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agassi Melikov & Ramil Mirzayev & Janos Sztrik, 2023. "Double-Sources Queuing-Inventory Systems with Finite Waiting Room and Destructible Stocks," Mathematics, MDPI, vol. 11(1), pages 1-16, January.
    2. Zhao, Ning & Lian, Zhaotong, 2011. "A queueing-inventory system with two classes of customers," International Journal of Production Economics, Elsevier, vol. 129(1), pages 225-231, January.
    3. A. Krishnamoorthy & Dhanya Shajin & B. Lakshmy, 2016. "GI/M/1 type queueing-inventory systems with postponed work, reservation, cancellation and common life time," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(2), pages 357-388, June.
    4. V. Radhamani & B. Sivakumar & G. Arivarignan, 2022. "A Comparative Study on Replenishment Policies for Perishable Inventory System with Service Facility and Multiple Server Vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 229-265, March.
    5. Saif Benjaafar & Mohsen ElHafsi & Tingliang Huang, 2010. "Optimal control of a production‐inventory system with both backorders and lost sales," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(3), pages 252-265, April.
    6. Chenavaz, Régis & Paraschiv, Corina, 2018. "Dynamic pricing for inventories with reference price effects," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-16.
    7. Alamri, Adel A. & Syntetos, Aris A., 2018. "Beyond LIFO and FIFO: Exploring an Allocation-In-Fraction-Out (AIFO) policy in a two-warehouse inventory model," International Journal of Production Economics, Elsevier, vol. 206(C), pages 33-45.
    8. Kouki, Chaaben & Babai, M. Zied & Jemai, Zied & Minner, Stefan, 2016. "A coordinated multi-item inventory system for perishables with random lifetime," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 226-237.
    9. Wu, Jiang & Chang, Chun-Tao & Teng, Jinn-Tsair & Lai, Kuei-Kuei, 2017. "Optimal order quantity and selling price over a product life cycle with deterioration rate linked to expiration date," International Journal of Production Economics, Elsevier, vol. 193(C), pages 343-351.
    10. Gabor, A.F. & Guang, Y. & Axsäter, S., 2014. "Comparison of two methods for customer differentiation," ERIM Report Series Research in Management ERS-2014-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. P. Escalona & F. Ordóñez & I. Kauak, 2017. "Critical level rationing in inventory systems with continuously distributed demand," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 273-301, January.
    12. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    13. Barut, M. & Sridharan, V, 2004. "Design and evaluation of a dynamic capacity apportionment procedure," European Journal of Operational Research, Elsevier, vol. 155(1), pages 112-133, May.
    14. Bing Lin & Shaoxiang Chen & Yi Feng & Jianjun Xu, 2018. "The Joint Stock and Capacity Rationings of a Make-To-Stock System with Flexible Demand," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(01), pages 1-27, February.
    15. Ketzenberg, Michael & Oliva, Rogelio & Wang, Yimin & Webster, Scott, 2023. "Retailer inventory data sharing in a fresh product supply chain," European Journal of Operational Research, Elsevier, vol. 307(2), pages 680-693.
    16. Janssen, Larissa & Diabat, Ali & Sauer, Jürgen & Herrmann, Frank, 2018. "A stochastic micro-periodic age-based inventory replenishment policy for perishable goods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 445-465.
    17. Civelek, Ismail & Karaesmen, Itir & Scheller-Wolf, Alan, 2015. "Blood platelet inventory management with protection levels," European Journal of Operational Research, Elsevier, vol. 243(3), pages 826-838.
    18. Li, Ruihai & Chan, Ya-Lan & Chang, Chun-Tao & Cárdenas-Barrón, Leopoldo Eduardo, 2017. "Pricing and lot-sizing policies for perishable products with advance-cash-credit payments by a discounted cash-flow analysis," International Journal of Production Economics, Elsevier, vol. 193(C), pages 578-589.
    19. Veronika NOVOTNA & Stanislav SKAPA, 2017. "A Nonlinear Microeconomic Model Of Goods Production And Sale Using Functional Analysis," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 11(1), pages 1-8, November.
    20. Jonas C.P. Yu & Kung-Jeng Wang & Yu-Siang Lin, 2016. "Managing dual warehouses with an incentive policy for deteriorating items," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(3), pages 586-602, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:247:y:2016:i:1:d:10.1007_s10479-015-1849-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.