IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v242y2016i1d10.1007_s10479-016-2203-7.html
   My bibliography  Save this article

Machine reassignment problem: the ROADEF/EURO challenge 2012

Author

Listed:
  • H. Murat Afsar

    (University of Technologie of Troyes)

  • Christian Artigues

    (Université de Toulouse)

  • Eric Bourreau

    (Université Montpellier 2)

  • Safia Kedad-Sidhoum

    (Sorbonne Universités)

Abstract

The ROADEF/EURO challenge is a contest jointly organized by the French Operational Research and Decision Aid society (ROADEF) and the European Operational Research society (EURO). The contest appears on a regular basis since 1999 and always concerns an industrial optimization problem proposed by an industrial partner. Google proposed a subject for the ROADEF/EURO challenge 2012 ( http://challenge.roadef.org/2012/en/ ), presenting a complex and large-scale machine reassignment problem, where a set of processes assigned to a set of machines have to be reassigned (or moved) while balancing machine usage improvement and moving costs, under resource (more precisely CPU, RAM, disk) and operational constraints. The 2012 challenge edition has been an unprecedented success with 82 registered teams, 48 teams that actually sent a program for qualification, 30 qualified teams and 27 teams that sent a program for the final evaluation. This paper aims at introducing the Annals of Operations Research special issue by presenting the ROADEF/EURO challenge 2012 subject, as well as the methods of the finalist teams and their results.

Suggested Citation

  • H. Murat Afsar & Christian Artigues & Eric Bourreau & Safia Kedad-Sidhoum, 2016. "Machine reassignment problem: the ROADEF/EURO challenge 2012," Annals of Operations Research, Springer, vol. 242(1), pages 1-17, July.
  • Handle: RePEc:spr:annopr:v:242:y:2016:i:1:d:10.1007_s10479-016-2203-7
    DOI: 10.1007/s10479-016-2203-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2203-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2203-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Artigues & Eric Bourreau & H. Murat Afsar & Olivier Briant & Mourad Boudia, 2012. "Disruption management for commercial airlines: methods and results for the ROADEF 2009 Challenge," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 6(6), pages 669-689.
    2. Solnon, Christine & Cung, Van Dat & Nguyen, Alain & Artigues, Christian, 2008. "The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the ROADEF'2005 challenge problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 912-927, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean André & Eric Bourreau & Roberto Wolfler Calvo, 2020. "Introduction to the Special Section: ROADEF/EURO Challenge 2016—Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 299-301, March.
    2. Wang, Guanglei & Ben-Ameur, Walid & Ouorou, Adam, 2019. "A Lagrange decomposition based branch and bound algorithm for the optimal mapping of cloud virtual machines," European Journal of Operational Research, Elsevier, vol. 276(1), pages 28-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Yugang & Huang, George Q., 2010. "Nash game model for optimizing market strategies, configuration of platform products in a Vendor Managed Inventory (VMI) supply chain for a product family," European Journal of Operational Research, Elsevier, vol. 206(2), pages 361-373, October.
    2. Golle, Uli & Rothlauf, Franz & Boysen, Nils, 2014. "Car sequencing versus mixed-model sequencing: A computational study," European Journal of Operational Research, Elsevier, vol. 237(1), pages 50-61.
    3. Elif Elcin Gunay & Ufuk Kula, 2017. "A stochastic programming model for resequencing buffer content optimisation in mixed-model assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2897-2912, May.
    4. Iwona Paprocka & Damian Krenczyk, 2023. "On Energy Consumption and Productivity in a Mixed-Model Assembly Line Sequencing Problem," Energies, MDPI, vol. 16(20), pages 1-19, October.
    5. Boysen, Nils & Bock, Stefan, 2011. "Scheduling just-in-time part supply for mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 211(1), pages 15-25, May.
    6. Boysen, Nils & Scholl, Armin & Wopperer, Nico, 2012. "Resequencing of mixed-model assembly lines: Survey and research agenda," European Journal of Operational Research, Elsevier, vol. 216(3), pages 594-604.
    7. Hanane Krim & Nicolas Zufferey & Jean-Yves Potvin & Rachid Benmansour & David Duvivier, 2022. "Tabu search for a parallel-machine scheduling problem with periodic maintenance, job rejection and weighted sum of completion times," Journal of Scheduling, Springer, vol. 25(1), pages 89-105, February.
    8. Rui Zhang, 2017. "Environment-Aware Production Scheduling for Paint Shops in Automobile Manufacturing: A Multi-Objective Optimization Approach," IJERPH, MDPI, vol. 15(1), pages 1-32, December.
    9. Staeblein, Thomas & Aoki, Katsuki, 2015. "Planning and scheduling in the automotive industry: A comparison of industrial practice at German and Japanese makers," International Journal of Production Economics, Elsevier, vol. 162(C), pages 258-272.
    10. Thorben Krueger & Achim Koberstein & Norbert Bittner, 2022. "Anticipating technical car sequencing rules in the master production scheduling of mixed-model assembly lines," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 351-407, June.
    11. Marie-Sklaerder Vié & Nicolas Zufferey & Roel Leus, 2022. "Aircraft landing planning under uncertain conditions," Journal of Scheduling, Springer, vol. 25(2), pages 203-228, April.
    12. Marcel Lehmann & Heinrich Kuhn, 2020. "Modeling and analyzing sequence stability in flexible automotive production systems," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 366-394, June.
    13. Janis Brammer & Bernhard Lutz & Dirk Neumann, 2022. "Stochastic mixed model sequencing with multiple stations using reinforcement learning and probability quantiles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 29-56, March.
    14. Florian Jaehn & Sergey Kovalev & Mikhail Y. Kovalyov & Erwin Pesch, 2014. "Multiproduct batching and scheduling with buffered rework: The case of a car paint shop," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 458-471, September.
    15. Jean André & Eric Bourreau & Roberto Wolfler Calvo, 2020. "Introduction to the Special Section: ROADEF/EURO Challenge 2016—Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 299-301, March.
    16. Guo, Xiaolong & Dong, Yufeng & Ling, Liuyi, 2016. "Customer perspective on overbooking: The failure of customers to enjoy their reserved services, accidental or intended?," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 65-72.
    17. Uli Golle & Franz Rothlauf & Nils Boysen, 2015. "Iterative beam search for car sequencing," Annals of Operations Research, Springer, vol. 226(1), pages 239-254, March.
    18. Buergin, Jens & Hammerschmidt, Andreas & Hao, Han & Kramer, Sergej & Tutsch, Hansjoerg & Lanza, Gisela, 2019. "Robust order planning with planned orders for multi-variant series production in a production network," International Journal of Production Economics, Elsevier, vol. 210(C), pages 107-119.
    19. Felix Winter & Nysret Musliu, 2022. "A large neighborhood search approach for the paint shop scheduling problem," Journal of Scheduling, Springer, vol. 25(4), pages 453-475, August.
    20. Parames Chutima & Sathaporn Olarnviwatchai, 2018. "A multi-objective car sequencing problem on two-sided assembly lines," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1617-1636, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:242:y:2016:i:1:d:10.1007_s10479-016-2203-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.