IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v216y2014i1p287-30510.1007-s10479-012-1129-y.html
   My bibliography  Save this article

Efficient computer experiment-based optimization through variable selection

Author

Listed:
  • Dachuan Shih
  • Seoung Kim
  • Victoria Chen
  • Jay Rosenberger
  • Venkata Pilla

Abstract

A computer experiment-based optimization approach employs design of experiments and statistical modeling to represent a complex objective function that can only be evaluated pointwise by running a computer model. In large-scale applications, the number of variables is huge, and direct use of computer experiments would require an exceedingly large experimental design and, consequently, significant computational effort. If a large portion of the variables have little impact on the objective, then there is a need to eliminate these before performing the complete set of computer experiments. This is a variable selection task. The ideal variable selection method for this task should handle unknown nonlinear structure, should be computationally fast, and would be conducted after a small number of computer experiment runs, likely fewer runs (N) than the number of variables (P). Conventional variable selection techniques are based on assumed linear model forms and cannot be applied in this “large P and small N” problem. In this paper, we present a framework that adds a variable selection step prior to computer experiment-based optimization, and we consider data mining methods, using principal components analysis and multiple testing based on false discovery rate, that are appropriate for our variable selection task. An airline fleet assignment case study is used to illustrate our approach. Copyright Springer Science+Business Media, LLC 2014

Suggested Citation

  • Dachuan Shih & Seoung Kim & Victoria Chen & Jay Rosenberger & Venkata Pilla, 2014. "Efficient computer experiment-based optimization through variable selection," Annals of Operations Research, Springer, vol. 216(1), pages 287-305, May.
  • Handle: RePEc:spr:annopr:v:216:y:2014:i:1:p:287-305:10.1007/s10479-012-1129-y
    DOI: 10.1007/s10479-012-1129-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1129-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1129-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julia Tsai & Victoria Chen & M. Beck & Jining Chen, 2004. "Stochastic Dynamic Programming Formulation for a Wastewater Treatment Decision-Making Framework," Annals of Operations Research, Springer, vol. 132(1), pages 207-221, November.
    2. Matthew E. Berge & Craig A. Hopperstad, 1993. "Demand Driven Dispatch: A Method for Dynamic Aircraft Capacity Assignment, Models and Algorithms," Operations Research, INFORMS, vol. 41(1), pages 153-168, February.
    3. Kleijnen, Jack P. C., 2005. "An overview of the design and analysis of simulation experiments for sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 164(2), pages 287-300, July.
    4. Victoria C. P. Chen & David Ruppert & Christine A. Shoemaker, 1999. "Applying Experimental Design and Regression Splines to High-Dimensional Continuous-State Stochastic Dynamic Programming," Operations Research, INFORMS, vol. 47(1), pages 38-53, February.
    5. Pilla, Venkata L. & Rosenberger, Jay M. & Chen, Victoria & Engsuwan, Narakorn & Siddappa, Sheela, 2012. "A multivariate adaptive regression splines cutting plane approach for solving a two-stage stochastic programming fleet assignment model," European Journal of Operational Research, Elsevier, vol. 216(1), pages 162-171.
    6. Balaji Gopalakrishnan & Ellis. Johnson, 2005. "Airline Crew Scheduling: State-of-the-Art," Annals of Operations Research, Springer, vol. 140(1), pages 305-337, November.
    7. Hanif D. Sherali & Xiaomei Zhu, 2008. "Two-Stage Fleet Assignment Model Considering Stochastic Passenger Demands," Operations Research, INFORMS, vol. 56(2), pages 383-399, April.
    8. Efron, Bradley, 2004. "Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 96-104, January.
    9. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    10. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    11. Jeffrey I. McGill & Garrett J. van Ryzin, 1999. "Revenue Management: Research Overview and Prospects," Transportation Science, INFORMS, vol. 33(2), pages 233-256, May.
    12. Temiyasathit, Chivalai & Kim, Seoung Bum & Park, Sun-Kyoung, 2009. "Spatial prediction of ozone concentration profiles," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3892-3906, September.
    13. Cervellera, Cristiano & Chen, Victoria C.P. & Wen, Aihong, 2006. "Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1139-1151, June.
    14. Victoria C. P. Chen & Dirk Günther & Ellis L. Johnson, 2003. "Solving for an optimal airline yield management policy via statistical learning," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 19-30, January.
    15. Zehua Yang & Victoria C. P. Chen & Michael E. Chang & Melanie L. Sattler & Aihong Wen, 2009. "A Decision-Making Framework for Ozone Pollution Control," Operations Research, INFORMS, vol. 57(2), pages 484-498, April.
    16. Chen, Victoria C. P., 1999. "Application of orthogonal arrays and MARS to inventory forecasting stochastic dynamic programs," Computational Statistics & Data Analysis, Elsevier, vol. 30(3), pages 317-341, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    2. Kazim Topuz & Hasmet Uner & Asil Oztekin & Mehmet Bayram Yildirim, 2018. "Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network," Annals of Operations Research, Springer, vol. 263(1), pages 479-499, April.
    3. Luciano Ferreira Cruz & Flavia Bernardo Pinto & Lucas Camilotti & Angelo Marcio Oliveira Santanna & Roberto Zanetti Freire & Leandro Santos Coelho, 2022. "Improved multiobjective differential evolution with spherical pruning algorithm for optimizing 3D printing technology parametrization process," Annals of Operations Research, Springer, vol. 319(2), pages 1565-1587, December.
    4. Alper Çevik & Gerhard-Wilhelm Weber & B. Murat Eyüboğlu & Kader Karlı Oğuz, 2017. "Voxel-MARS: a method for early detection of Alzheimer’s disease by classification of structural brain MRI," Annals of Operations Research, Springer, vol. 258(1), pages 31-57, November.
    5. Delen, Dursun & Topuz, Kazim & Eryarsoy, Enes, 2020. "Development of a Bayesian Belief Network-based DSS for predicting and understanding freshmen student attrition," European Journal of Operational Research, Elsevier, vol. 281(3), pages 575-587.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pilla, Venkata L. & Rosenberger, Jay M. & Chen, Victoria & Engsuwan, Narakorn & Siddappa, Sheela, 2012. "A multivariate adaptive regression splines cutting plane approach for solving a two-stage stochastic programming fleet assignment model," European Journal of Operational Research, Elsevier, vol. 216(1), pages 162-171.
    2. Ariyajunya, Bancha & Chen, Ying & Chen, Victoria C.P. & Kim, Seoung Bum & Rosenberger, Jay, 2021. "Addressing state space multicollinearity in solving an ozone pollution dynamic control problem," European Journal of Operational Research, Elsevier, vol. 289(2), pages 683-695.
    3. Huiyuan Fan & Prashant K. Tarun & Victoria C. P. Chen & Dachuan T. Shih & Jay M. Rosenberger & Seoung Bum Kim & Robert A. Horton, 2018. "Data-driven optimization for Dallas Fort Worth International Airport deicing activities," Annals of Operations Research, Springer, vol. 263(1), pages 361-384, April.
    4. Elcin Koc & Cem Iyigun, 2014. "Restructuring forward step of MARS algorithm using a new knot selection procedure based on a mapping approach," Journal of Global Optimization, Springer, vol. 60(1), pages 79-102, September.
    5. Zehua Yang & Victoria C. P. Chen & Michael E. Chang & Melanie L. Sattler & Aihong Wen, 2009. "A Decision-Making Framework for Ozone Pollution Control," Operations Research, INFORMS, vol. 57(2), pages 484-498, April.
    6. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2010. "Integrated Airline Schedule Design and Fleet Assignment: Polyhedral Analysis and Benders' Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 500-513, November.
    7. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.
    8. Catherine Cleophas & Daniel Kadatz & Sebastian Vock, 2017. "Resilient revenue management: a literature survey of recent theoretical advances," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(5), pages 483-498, October.
    9. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    10. Abdelghany, Ahmed & Abdelghany, Khaled & Azadian, Farshid, 2023. "The airline seat capacity allocation problem: An expected marginal profit approach," Journal of Air Transport Management, Elsevier, vol. 112(C).
    11. Douglas R. Bish & Ebru K. Bish & Lingrui Liao & Juqi Liu, 2011. "Revenue management with aircraft reassignment flexibility," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 136-152, March.
    12. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    13. Zéphyr, Luckny & Lang, Pascal & Lamond, Bernard F. & Côté, Pascal, 2017. "Approximate stochastic dynamic programming for hydroelectric production planning," European Journal of Operational Research, Elsevier, vol. 262(2), pages 586-601.
    14. Kenan, Nabil & Diabat, Ali & Jebali, Aida, 2018. "Codeshare agreements in the integrated aircraft routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 272-295.
    15. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    16. Ming Liu & Yueyu Ding & Lihua Sun & Runchun Zhang & Yue Dong & Zihan Zhao & Yiting Wang & Chaoran Liu, 2023. "Green Airline-Fleet Assignment with Uncertain Passenger Demand and Fuel Price," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    17. Keji Wei & Vikrant Vaze, 2020. "Airline Timetable Development and Fleet Assignment Incorporating Passenger Choice," Transportation Science, INFORMS, vol. 54(1), pages 139-163, January.
    18. Hanif D. Sherali & Ebru K. Bish & Xiaomei Zhu, 2005. "Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment," Transportation Science, INFORMS, vol. 39(3), pages 349-366, August.
    19. Cynthia Barnhart & Amr Farahat & Manoj Lohatepanont, 2009. "Airline Fleet Assignment with Enhanced Revenue Modeling," Operations Research, INFORMS, vol. 57(1), pages 231-244, February.
    20. Saravanan Venkatachalam & Suresh Acharya & Kenji Oba & Yoshinari Nakayama, 2020. "Prescriptive Analytics for Swapping Aircraft Assignments at All Nippon Airways," Interfaces, INFORMS, vol. 50(2), pages 99-111, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:216:y:2014:i:1:p:287-305:10.1007/s10479-012-1129-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.