IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v195y2012i1p5-3110.1007-s10479-011-0848-9.html
   My bibliography  Save this article

On some claims related to Choquet integral risk measures

Author

Listed:
  • Hung Nguyen
  • Uyen Pham
  • Hien Tran

Abstract

We examine two important claims by S.S. Wang and J. Treussard concerning the use of distortion functions as a universal tool in pricing financial and insurance risks, and the use of risk neutral probabilities in evaluating risks, respectively. Their claims seem reasonable only in the classical framework of Black–Scholes model, but not convincing in more extended and realistic models such as Lévy processes. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Hung Nguyen & Uyen Pham & Hien Tran, 2012. "On some claims related to Choquet integral risk measures," Annals of Operations Research, Springer, vol. 195(1), pages 5-31, May.
  • Handle: RePEc:spr:annopr:v:195:y:2012:i:1:p:5-31:10.1007/s10479-011-0848-9
    DOI: 10.1007/s10479-011-0848-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-0848-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-0848-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christophe Labreuche & M. Grabisch, 2007. "The representation of conditional relative importance between criteria," Annals of Operations Research, Springer, vol. 154(1), pages 93-122, October.
    2. Gerber, Hans U. & Shiu, Elias S. W., 1996. "Actuarial bridges to dynamic hedging and option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 18(3), pages 183-218, November.
    3. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    4. Wang, Shaun S., 2003. "Equilibrium Pricing Transforms: New Results Using Buhlmann’s 1980 Economic Model," ASTIN Bulletin, Cambridge University Press, vol. 33(1), pages 57-73, May.
    5. Wang, Shaun S., 2002. "A Universal Framework for Pricing Financial and Insurance Risks," ASTIN Bulletin, Cambridge University Press, vol. 32(2), pages 213-234, November.
    6. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    7. Etheridge,Alison, 2002. "A Course in Financial Calculus," Cambridge Books, Cambridge University Press, number 9780521890779.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Etheridge,Alison, 2002. "A Course in Financial Calculus," Cambridge Books, Cambridge University Press, number 9780521813853.
    11. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath & Hyejin Ku, 2007. "Coherent multiperiod risk adjusted values and Bellman’s principle," Annals of Operations Research, Springer, vol. 152(1), pages 5-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zsolt Bihary & Péter Csóka & Dávid Zoltán Szabó, 2020. "Spectral risk measure of holding stocks in the long run," Annals of Operations Research, Springer, vol. 295(1), pages 75-89, December.
    2. Csóka, Péter & Bihary, Zsolt & Kondor, Gábor, 2018. "A részvénytartás spektrális kockázata hosszú távon [On the spectral measure of risk in holding stocks in the long run]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 687-700.
    3. Christian Gourieroux & Hung T. Nguyen & Songsak Sriboonchitta, 2017. "Nonparametric estimation of a scalar diffusion model from discrete time data: a survey," Annals of Operations Research, Springer, vol. 256(2), pages 203-219, September.
    4. Dávid Zoltán Szabó & Zsolt Bihary, 2023. "The riskiness of stock versus money market investment with stochastic rates," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 393-415, June.
    5. Tarik Driouchi & Lenos Trigeorgis & Raymond H. Y. So, 2018. "Option implied ambiguity and its information content: Evidence from the subprime crisis," Annals of Operations Research, Springer, vol. 262(2), pages 463-491, March.
    6. Debora Daniela Escobar & Georg Ch. Pflug, 2020. "The distortion principle for insurance pricing: properties, identification and robustness," Annals of Operations Research, Springer, vol. 292(2), pages 771-794, September.
    7. Daniela Escobar & Georg Pflug, 2018. "The distortion principle for insurance pricing: properties, identification and robustness," Papers 1809.06592, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zsolt Bihary & Péter Csóka & Dávid Zoltán Szabó, 2020. "Spectral risk measure of holding stocks in the long run," Annals of Operations Research, Springer, vol. 295(1), pages 75-89, December.
    2. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    3. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    4. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2015.
    5. Fu, Tianwen & Zhuang, Xinkai & Hui, Yongchang & Liu, Jia, 2017. "Convex risk measures based on generalized lower deviation and their applications," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 27-37.
    6. Stadje, M.A. & Pelsser, A., 2014. "Time-Consistent and Market-Consistent Evaluations (Revised version of 2012-086)," Discussion Paper 2014-002, Tilburg University, Center for Economic Research.
    7. Kijima, Masaaki & Muromachi, Yukio, 2008. "An extension of the Wang transform derived from Bühlmann's economic premium principle for insurance risk," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 887-896, June.
    8. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    9. Georg Ch. Pflug & Alois Pichler, 2016. "Time-Consistent Decisions and Temporal Decomposition of Coherent Risk Functionals," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 682-699, May.
    10. Hampus Engsner & Mathias Lindholm & Filip Lindskog, 2016. "Insurance valuation: a computable multi-period cost-of-capital approach," Papers 1607.04100, arXiv.org.
    11. Fasen Vicky & Svejda Adela, 2012. "Time consistency of multi-period distortion measures," Statistics & Risk Modeling, De Gruyter, vol. 29(2), pages 133-153, June.
    12. Gregor Dorfleitner, 2022. "On the use of the terminal-value approach in risk-value models," Annals of Operations Research, Springer, vol. 313(2), pages 877-897, June.
    13. Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2021. "Stochastic measure distortions induced by quantile processes for risk quantification and valuation," Papers 2201.02045, arXiv.org.
    14. Pierre Devolder & Adrien Lebègue, 2016. "Compositions of Conditional Risk Measures and Solvency Capital," Risks, MDPI, vol. 4(4), pages 1-21, December.
    15. Engsner, Hampus & Lindholm, Mathias & Lindskog, Filip, 2017. "Insurance valuation: A computable multi-period cost-of-capital approach," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 250-264.
    16. Lau, John W. & Siu, Tak Kuen, 2008. "On option pricing under a completely random measure via a generalized Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 99-107, August.
    17. Pelsser, Antoon & Salahnejhad Ghalehjooghi, Ahmad, 2016. "Time-consistent actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 97-112.
    18. Diderik Lund, 2005. "How to analyze the investment–uncertainty relationship in real option models?," Review of Financial Economics, John Wiley & Sons, vol. 14(3-4), pages 311-322.
    19. Leung, Melvern & Fung, Man Chung & O’Hare, Colin, 2018. "A comparative study of pricing approaches for longevity instruments," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 95-116.
    20. Alexander Kushpel, 2015. "Pricing of high-dimensional options," Papers 1510.07221, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:195:y:2012:i:1:p:5-31:10.1007/s10479-011-0848-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.