IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v191y2011i1p219-24910.1007-s10479-011-0996-y.html
   My bibliography  Save this article

A sensitivity analysis to assess the completion time deviation for multi-purpose machines facing demand uncertainty

Author

Listed:
  • André Rossi
  • Alexis Aubry
  • Mireille Jacomino

Abstract

This paper addresses multi-purpose machine configuration in an uncertain context through sensitivity analysis. The so-called configuration is the machine’s ability to process products, and the uncertain context is modelled as a demand variation affecting the forecast demand. Given a configuration, this work aims at assessing the completion time deviation when the workshop demand is subject to perturbation. Such quantitative information can be used in a robustness approach for selecting the most appropriate configuration. To do so, the configuration impact on the completion time value that can be reached by solving the attached scheduling problem is first investigated. Then, the completion time deviation is written as a piecewise linear function of the magnitude of demand variation. The proposed approach, which is based on the solution of a set of linear programs, is illustrated through a detailed example. It is shown to be polynomial, and fast enough for addressing real-world instances. Finally, how to compare two configurations on the basis of completion time deviation in an uncertain context is demonstrated. Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • André Rossi & Alexis Aubry & Mireille Jacomino, 2011. "A sensitivity analysis to assess the completion time deviation for multi-purpose machines facing demand uncertainty," Annals of Operations Research, Springer, vol. 191(1), pages 219-249, November.
  • Handle: RePEc:spr:annopr:v:191:y:2011:i:1:p:219-249:10.1007/s10479-011-0996-y
    DOI: 10.1007/s10479-011-0996-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-0996-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-0996-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Brucker & Bernd Jurisch & Andreas Krämer, 1997. "Complexity of scheduling problems with multi-purpose machines," Annals of Operations Research, Springer, vol. 70(0), pages 57-73, April.
    2. Leung, Joseph Y.-T. & Li, Chung-Lun, 2008. "Scheduling with processing set restrictions: A survey," International Journal of Production Economics, Elsevier, vol. 116(2), pages 251-262, December.
    3. Jinwen Ou & Joseph Y.‐T. Leung & Chung‐Lun Li, 2008. "Scheduling parallel machines with inclusive processing set restrictions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 328-338, June.
    4. Aubry, A. & Rossi, A. & Espinouse, M.-L. & Jacomino, M., 2008. "Minimizing setup costs for parallel multi-purpose machines under load-balancing constraint," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1115-1125, June.
    5. Penz, B. & Rapine, C. & Trystram, D., 2001. "Sensitivity analysis of scheduling algorithms," European Journal of Operational Research, Elsevier, vol. 134(3), pages 606-615, November.
    6. Kouvelis, Panagiotis & Kurawarwala, Abbas A. & Gutierrez, Genaro J., 1992. "Algorithms for robust single and multiple period layout planning for manufacturing systems," European Journal of Operational Research, Elsevier, vol. 63(2), pages 287-303, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leung, Joseph Y.-T. & Li, Chung-Lun, 2016. "Scheduling with processing set restrictions: A literature update," International Journal of Production Economics, Elsevier, vol. 175(C), pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2021. "Scheduling Human-Robot Teams in collaborative working cells," International Journal of Production Economics, Elsevier, vol. 235(C).
    2. Juntaek Hong & Kangbok Lee & Michael L. Pinedo, 2020. "Scheduling equal length jobs with eligibility restrictions," Annals of Operations Research, Springer, vol. 285(1), pages 295-314, February.
    3. Huiqiao Su & Michael Pinedo & Guohua Wan, 2017. "Parallel machine scheduling with eligibility constraints: A composite dispatching rule to minimize total weighted tardiness," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 249-267, April.
    4. Chuleeporn Kusoncum & Kanchana Sethanan & Richard F. Hartl & Thitipong Jamrus, 2022. "Modified differential evolution and heuristic algorithms for dump tippler machine allocation in a typical sugar mill in Thailand," Operational Research, Springer, vol. 22(5), pages 5863-5895, November.
    5. Xianglai Qi & Jinjiang Yuan, 2019. "Semi-Online Hierarchical Scheduling on Two Machines for lp-Norm Load Balancing," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-16, February.
    6. Kangbok Lee & Joseph Leung & Michael Pinedo, 2013. "Makespan minimization in online scheduling with machine eligibility," Annals of Operations Research, Springer, vol. 204(1), pages 189-222, April.
    7. Jinwen Ou & Xueling Zhong & Xiangtong Qi, 2016. "Scheduling parallel machines with inclusive processing set restrictions and job rejection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 667-681, December.
    8. Hans Kellerer & Joseph Y.‐T. Leung & Chung‐Lun Li, 2011. "Multiple subset sum with inclusive assignment set restrictions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(6), pages 546-563, September.
    9. Dominik Kress & Sebastian Meiswinkel & Erwin Pesch, 2018. "Mechanism design for machine scheduling problems: classification and literature overview," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 583-611, July.
    10. Li, Shuguang, 2017. "Parallel batch scheduling with inclusive processing set restrictions and non-identical capacities to minimize makespan," European Journal of Operational Research, Elsevier, vol. 260(1), pages 12-20.
    11. Xianglai Qi & Jinjiang Yuan, 2017. "Semi-online hierarchical scheduling for $$l_p$$ l p -norm load balancing with buffer or rearrangements," 4OR, Springer, vol. 15(3), pages 265-276, September.
    12. Giorgi Tadumadze & Simon Emde & Heiko Diefenbach, 2020. "Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 461-497, June.
    13. Leung, Joseph Y.-T. & Li, Chung-Lun, 2008. "Scheduling with processing set restrictions: A survey," International Journal of Production Economics, Elsevier, vol. 116(2), pages 251-262, December.
    14. Javad Rezaeian & Reza Alizadeh Foroutan & Toraj Mojibi & Yacob Khojasteh, 2023. "Sensitivity Analysis of the Unrelated Parallel Machine Scheduling Problem with Rework Processes and Machine Eligibility Restrictions," SN Operations Research Forum, Springer, vol. 4(3), pages 1-24, September.
    15. Roy, Bernard, 2010. "Robustness in operational research and decision aiding: A multi-faceted issue," European Journal of Operational Research, Elsevier, vol. 200(3), pages 629-638, February.
    16. Allaoui, Hamid & Artiba, AbdelHakim, 2009. "Johnson's algorithm: A key to solve optimally or approximately flow shop scheduling problems with unavailability periods," International Journal of Production Economics, Elsevier, vol. 121(1), pages 81-87, September.
    17. Yun Hui Lin & Yuan Wang & Loo Hay Lee & Ek Peng Chew, 2021. "Robust facility location with structural complexity and demand uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 485-507, June.
    18. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    19. Yifei Zhao & Stein W. Wallace, 2016. "Appraising redundancy in facility layout," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 665-679, February.
    20. Kalaı¨, Rim & Lamboray, Claude & Vanderpooten, Daniel, 2012. "Lexicographic α-robustness: An alternative to min–max criteria," European Journal of Operational Research, Elsevier, vol. 220(3), pages 722-728.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:191:y:2011:i:1:p:219-249:10.1007/s10479-011-0996-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.