IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v178y2010i1p173-20010.1007-s10479-009-0571-y.html
   My bibliography  Save this article

Small world network models of the dynamics of HIV infection

Author

Listed:
  • I. Vieira
  • R. Cheng
  • P. Harper
  • V. Senna

Abstract

It has long been recognised that the structure of social networks plays an important role in the dynamics of disease propagation. The spread of HIV results from a complex network of social interactions and other factors related to culture, sexual behaviour, demography, geography and disease characteristics, as well as the availability, accessibility and delivery of healthcare. The small world phenomenon has recently been used for representing social network interactions. It states that, given some random connections, the degrees of separation between any two individuals within a population can be very small. In this paper we present a discrete event simulation model which uses a variant of the small world network model to represent social interactions and the sexual transmission of HIV within a population. We use the model to demonstrate the importance of the choice of topology and initial distribution of infection, and capture the direct and non-linear relationship between the probability of a casual partnership (small world randomness parameter) and the spread of HIV. Finally, we illustrate the use of our model for the evaluation of interventions such as the promotion of safer sex and introduction of a vaccine. Copyright Springer Science+Business Media, LLC 2010

Suggested Citation

  • I. Vieira & R. Cheng & P. Harper & V. Senna, 2010. "Small world network models of the dynamics of HIV infection," Annals of Operations Research, Springer, vol. 178(1), pages 173-200, July.
  • Handle: RePEc:spr:annopr:v:178:y:2010:i:1:p:173-200:10.1007/s10479-009-0571-y
    DOI: 10.1007/s10479-009-0571-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0571-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0571-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. E. J. Newman & D. J. Watts, 1999. "Scaling and Percolation in the Small-World Network Model," Working Papers 99-05-034, Santa Fe Institute.
    2. Cristopher Moore & M. E. J. Newman, 2000. "Epidemics and Percolation in Small-World Networks," Working Papers 00-01-002, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. László Á. Kóczy, 2022. "Core-stability over networks with widespread externalities," Annals of Operations Research, Springer, vol. 318(2), pages 1001-1027, November.
    2. Eva Enns & Margaret Brandeau, 2011. "Inferring model parameters in network-based disease simulation," Health Care Management Science, Springer, vol. 14(2), pages 174-188, June.
    3. Matthew Eden & Rebecca Castonguay & Buyannemekh Munkhbat & Hari Balasubramanian & Chaitra Gopalappa, 2021. "Agent-based evolving network modeling: a new simulation method for modeling low prevalence infectious diseases," Health Care Management Science, Springer, vol. 24(3), pages 623-639, September.
    4. Nadia N Abuelezam & Kathryn Rough & George R Seage III, 2013. "Individual-Based Simulation Models of HIV Transmission: Reporting Quality and Recommendations," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.
    5. Olufolajimi Oke & Kavi Bhalla & David C. Love & Sauleh Siddiqui, 2018. "Spatial associations in global household bicycle ownership," Annals of Operations Research, Springer, vol. 263(1), pages 529-549, April.
    6. Flaer, Paul J. & Cistone, Peter J. & Younis, Mustafa Z. & Parkash, Jai, 2013. "A connectivity model for assessment of HIV transmission risk in injection drug users (IDUs)," Evaluation and Program Planning, Elsevier, vol. 39(C), pages 23-27.
    7. Benjamin Armbruster & Ekkehard Beck & Mustafa Waheed, 2014. "The importance of extended high viremics in models of HIV spread in South Africa," Health Care Management Science, Springer, vol. 17(2), pages 182-193, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Floortje Alkemade & Carolina Castaldi, 2005. "Strategies for the Diffusion of Innovations on Social Networks," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 3-23, February.
    2. Hüseyin İkizler, 2019. "Contagion of network products in small-world networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(4), pages 789-809, December.
    3. Kumar, Ajay & Swarnakar, Pradip & Jaiswal, Kamya & Kurele, Ritika, 2020. "SMIR model for controlling the spread of information in social networking sites," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Zhong, Li-Xin & Xu, Wen-Juan & Chen, Rong-Da & Qiu, Tian & Shi, Yong-Dong & Zhong, Chen-Yang, 2015. "Coupled effects of local movement and global interaction on contagion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 482-491.
    5. Cristopher Moore & M. E. J. Newman, 2000. "Exact Solution of Site and Bond Percolation on Small-World Networks," Working Papers 00-01-007, Santa Fe Institute.
    6. Mahendra Piraveenan & Mikhail Prokopenko & Liaquat Hossain, 2013. "Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-14, January.
    7. Jaideep Ghosh & Avinash Kshitij, 2017. "Examining the Emergence of Large-scale Structures in Collaboration Networks: Methods in Sociological Analysis," Sociological Methods & Research, , vol. 46(4), pages 821-863, November.
    8. Yang, Jianmei & Zhuang, Dong & Xie, Weicong & Chen, Guangrong, 2013. "A study of design approach of spreading schemes for viral marketing based on human dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6494-6505.
    9. Scabini, Leonardo F.S. & Ribas, Lucas C. & Neiva, Mariane B. & Junior, Altamir G.B. & Farfán, Alex J.F. & Bruno, Odemir M., 2021. "Social interaction layers in complex networks for the dynamical epidemic modeling of COVID-19 in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    10. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).
    11. Ganjeh-Ghazvini, Mostafa & Masihi, Mohsen & Ghaedi, Mojtaba, 2014. "Random walk–percolation-based modeling of two-phase flow in porous media: Breakthrough time and net to gross ratio estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 214-221.
    12. Lahtinen, Jani & Kertész, János & Kaski, Kimmo, 2005. "Sandpiles on Watts–Strogatz type small-worlds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 535-547.
    13. Sadeghnejad, S. & Masihi, M. & King, P.R., 2013. "Dependency of percolation critical exponents on the exponent of power law size distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6189-6197.
    14. Pan, Ya-Nan & Lou, Jing-Jing & Han, Xiao-Pu, 2014. "Outbreak patterns of the novel avian influenza (H7N9)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 265-270.
    15. Lee Fleming & Charles King & Adam I. Juda, 2007. "Small Worlds and Regional Innovation," Organization Science, INFORMS, vol. 18(6), pages 938-954, December.
    16. Dorso, Claudio O. & Medus, Andrés & Balenzuela, Pablo, 2017. "Vaccination and public trust: A model for the dissemination of vaccination behaviour with external intervention," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 433-443.
    17. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    18. Xenikos, D.G. & Constantoudis, V., 2023. "Weibull dynamics and power-law diffusion of epidemics in small world 2D networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    19. Andrea Giovannetti, 2012. "Financial Contagion in Industrial Clusters: A Dynamical Analysis and Network Simulation," Department of Economics University of Siena 654, Department of Economics, University of Siena.
    20. Qin, Yang & Zhong, Xiaoxiong & Jiang, Hao & Ye, Yibin, 2015. "An environment aware epidemic spreading model and immune strategy in complex networks," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 206-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:178:y:2010:i:1:p:173-200:10.1007/s10479-009-0571-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.