IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i24p6494-6505.html
   My bibliography  Save this article

A study of design approach of spreading schemes for viral marketing based on human dynamics

Author

Listed:
  • Yang, Jianmei
  • Zhuang, Dong
  • Xie, Weicong
  • Chen, Guangrong

Abstract

Before launching a real viral marketing campaign, it is needed to design a spreading scheme by simulations. Based on a categorization of spreading patterns in real world and models, we point out that the existing research (especially Yang et al. (2010) Ref. [16]) implicitly assume that if a user decides to post a received message (is activated), he/she will take the reposting action promptly (Prompt Action After Activation, or PAAA). After a careful analysis on a real dataset however, it is found that the observed time differences between action and activation exhibit a heavy-tailed distribution. A simulation model for heavy-tailed pattern is then proposed and performed. Similarities and differences of spreading processes between the heavy-tailed and PAAA patterns are analyzed. Consequently, a more practical design approach of spreading scheme for viral marketing on QQ platform is proposed. The design approach can be extended and applied to the contexts of non-heavy-tailed pattern, and viral marketing on other instant messaging platforms.

Suggested Citation

  • Yang, Jianmei & Zhuang, Dong & Xie, Weicong & Chen, Guangrong, 2013. "A study of design approach of spreading schemes for viral marketing based on human dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6494-6505.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:24:p:6494-6505
    DOI: 10.1016/j.physa.2013.07.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113006900
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.07.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jianmei & Yao, Canzhong & Ma, Weicheng & Chen, Guanrong, 2010. "A study of the spreading scheme for viral marketing based on a complex network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 859-870.
    2. M. E. J. Newman & D. J. Watts, 1999. "Scaling and Percolation in the Small-World Network Model," Working Papers 99-05-034, Santa Fe Institute.
    3. Cristopher Moore & M. E. J. Newman, 2000. "Epidemics and Percolation in Small-World Networks," Working Papers 00-01-002, Santa Fe Institute.
    4. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    5. Mauro Bampo & Michael T. Ewing & Dineli R. Mather & David Stewart & Mark Wallace, 2008. "The Effects of the Social Structure of Digital Networks on Viral Marketing Performance," Information Systems Research, INFORMS, vol. 19(3), pages 273-290, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Narisa Zhao & Hui Li, 2020. "How can social commerce be boosted? The impact of consumer behaviors on the information dissemination mechanism in a social commerce network," Electronic Commerce Research, Springer, vol. 20(4), pages 833-856, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hüseyin İkizler, 2019. "Contagion of network products in small-world networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(4), pages 789-809, December.
    2. Amini, Mehdi & Wakolbinger, Tina & Racer, Michael & Nejad, Mohammad G., 2012. "Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach," European Journal of Operational Research, Elsevier, vol. 216(2), pages 301-311.
    3. Floortje Alkemade & Carolina Castaldi, 2005. "Strategies for the Diffusion of Innovations on Social Networks," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 3-23, February.
    4. Haris Krijestorac & Rajiv Garg & Vijay Mahajan, 2020. "Cross-Platform Spillover Effects in Consumption of Viral Content: A Quasi-Experimental Analysis Using Synthetic Controls," Information Systems Research, INFORMS, vol. 31(2), pages 449-472, June.
    5. I. Vieira & R. Cheng & P. Harper & V. Senna, 2010. "Small world network models of the dynamics of HIV infection," Annals of Operations Research, Springer, vol. 178(1), pages 173-200, July.
    6. Paolo Zeppini & Koen Frenken, 2015. "Networks, Percolation, and Demand," Department of Economics Working Papers 38/15, University of Bath, Department of Economics.
    7. Sáenz-Royo, Carlos & Lozano-Rojo, Álvaro, 2023. "Authoritarianism versus participation in innovation decisions," Technovation, Elsevier, vol. 124(C).
    8. Tomovski, Igor & Kocarev, Ljupčo, 2015. "Network topology inference from infection statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 272-285.
    9. Delre, S.A. & Jager, W. & Bijmolt, T.H.A. & Janssen, M.A., 2007. "Targeting and timing promotional activities: An agent-based model for the takeoff of new products," Journal of Business Research, Elsevier, vol. 60(8), pages 826-835, August.
    10. Kumar, Ajay & Swarnakar, Pradip & Jaiswal, Kamya & Kurele, Ritika, 2020. "SMIR model for controlling the spread of information in social networking sites," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    11. Lee, Hyejun & Lee, Dong Il & Kim, Taeho & Lee, Juhyun, 2013. "The moderating role of socio-semantic networks on online buzz diffusion," Journal of Business Research, Elsevier, vol. 66(9), pages 1367-1374.
    12. Chorowski, Michał & Nowak, Andrzej & Andersen, Jørgen Vitting, 2023. "What makes products trendy: Introducing an innovation adoption model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    13. Mahendra Piraveenan & Mikhail Prokopenko & Liaquat Hossain, 2013. "Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-14, January.
    14. Paolo Zeppini & Koen Frenken & Luis R. Izquierdo, 2013. "Innovation diffusion in networks: the microeconomics of percolation," Working Papers 13-02, Eindhoven Center for Innovation Studies, revised Feb 2013.
    15. Sebastiano A. Delre & Wander Jager & Marco A. Janssen, 2007. "Diffusion dynamics in small-world networks with heterogeneous consumers," Computational and Mathematical Organization Theory, Springer, vol. 13(2), pages 185-202, June.
    16. Xenikos, D.G. & Constantoudis, V., 2023. "Weibull dynamics and power-law diffusion of epidemics in small world 2D networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    17. Li, Pengdeng & Yang, Xiaofan & Yang, Lu-Xing & Xiong, Qingyu & Wu, Yingbo & Tang, Yuan Yan, 2018. "The modeling and analysis of the word-of-mouth marketing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 1-16.
    18. Zhong, Li-Xin & Xu, Wen-Juan & Chen, Rong-Da & Qiu, Tian & Shi, Yong-Dong & Zhong, Chen-Yang, 2015. "Coupled effects of local movement and global interaction on contagion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 482-491.
    19. Florian Probst & Laura Grosswiele & Regina Pfleger, 2013. "Who will lead and who will follow: Identifying Influential Users in Online Social Networks," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 5(3), pages 179-193, June.
    20. Cristopher Moore & M. E. J. Newman, 2000. "Exact Solution of Site and Bond Percolation on Small-World Networks," Working Papers 00-01-007, Santa Fe Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:24:p:6494-6505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.