IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v167y2009i1p297-30610.1007-s10479-008-0337-y.html
   My bibliography  Save this article

Efficient solution approaches for a discrete multi-facility competitive interaction model

Author

Listed:
  • Robert Aboolian
  • Oded Berman
  • Dmitry Krass

Abstract

In this paper, we present efficient solution approaches for discrete multi-facility competitive interaction model. Applying the concept of “Tangent Line Approximation” presented by the authors in their previous work, we develop efficient computational approaches—both exact and approximate (with controllable error bound α). Computational experiments show that the approximate approach (with small α) performs extremely well solving large scale problems while the exact approach performs very well for small to medium-sized problems. Copyright Springer Science+Business Media, LLC 2009

Suggested Citation

  • Robert Aboolian & Oded Berman & Dmitry Krass, 2009. "Efficient solution approaches for a discrete multi-facility competitive interaction model," Annals of Operations Research, Springer, vol. 167(1), pages 297-306, March.
  • Handle: RePEc:spr:annopr:v:167:y:2009:i:1:p:297-306:10.1007/s10479-008-0337-y
    DOI: 10.1007/s10479-008-0337-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-008-0337-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-008-0337-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David L. Huff, 1966. "A Programmed Solution for Approximating an Optimum Retail Location," Land Economics, University of Wisconsin Press, vol. 42(3), pages 293-303.
    2. Drezner, Tammy & Drezner, Zvi & Salhi, Said, 2002. "Solving the multiple competitive facilities location problem," European Journal of Operational Research, Elsevier, vol. 142(1), pages 138-151, October.
    3. Plastria, Frank, 1992. "GBSSS: The generalized big square small square method for planar single-facility location," European Journal of Operational Research, Elsevier, vol. 62(2), pages 163-174, October.
    4. Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
    5. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location model with concave demand," European Journal of Operational Research, Elsevier, vol. 181(2), pages 598-619, September.
    6. Alberto Caprara & David Pisinger & Paolo Toth, 1999. "Exact Solution of the Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 125-137, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurent Alfandari & Victoire Denoyel & Aurélie Thiele, 2020. "Solving utility-maximization selection problems with Multinomial Logit demand: Is the First-Choice model a good approximation?," Annals of Operations Research, Springer, vol. 292(1), pages 553-573, September.
    2. Tammy Drezner & Zvi Drezner & Atsuo Suzuki, 2019. "A cover based competitive facility location model with continuous demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 565-581, October.
    3. Godinho, Pedro & Dias, Joana, 2013. "Two-player simultaneous location game: Preferential rights and overbidding," European Journal of Operational Research, Elsevier, vol. 229(3), pages 663-672.
    4. Zvi Drezner & Dawit Zerom, 2023. "Competitive facility location under attrition," Computational Management Science, Springer, vol. 20(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T Drezner & Z Drezner, 2008. "Lost demand in a competitive environment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 362-371, March.
    2. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    3. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    4. H Küçükaydın & N Aras & İ K Altınel, 2011. "A discrete competitive facility location model with variable attractiveness," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1726-1741, September.
    5. Tammy Drezner & Zvi Drezner & Atsuo Suzuki, 2019. "A cover based competitive facility location model with continuous demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 565-581, October.
    6. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location model with concave demand," European Journal of Operational Research, Elsevier, vol. 181(2), pages 598-619, September.
    7. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    8. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    9. Rafael Suárez-Vega & Dolores Santos-Peñate & Pablo Dorta-González, 2014. "Location and quality selection for new facilities on a network market," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(2), pages 537-560, March.
    10. Blanquero, Rafael & Carrizosa, Emilio & G.-Tóth, Boglárka & Nogales-Gómez, Amaya, 2016. "p-facility Huff location problem on networks," European Journal of Operational Research, Elsevier, vol. 255(1), pages 34-42.
    11. Zvi Drezner & George Wesolowsky, 2014. "Covering Part of a Planar Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 629-646, December.
    12. A. Gürhan Kök & Marshall L. Fisher, 2007. "Demand Estimation and Assortment Optimization Under Substitution: Methodology and Application," Operations Research, INFORMS, vol. 55(6), pages 1001-1021, December.
    13. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2021. "Optimizing facility location and design," European Journal of Operational Research, Elsevier, vol. 289(1), pages 31-43.
    14. Zvi Drezner & Dawit Zerom, 2023. "Competitive facility location under attrition," Computational Management Science, Springer, vol. 20(1), pages 1-19, December.
    15. Tammy Drezner & Zvi Drezner, 2016. "Sequential location of two facilities: comparing random to optimal location of the first facility," Annals of Operations Research, Springer, vol. 246(1), pages 5-18, November.
    16. Torrealba, E.M.R. & Silva, J.G. & Matioli, L.C. & Kolossoski, O. & Santos, P.S.M., 2022. "Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 46-59.
    17. Rezapour, Shabnam & Hassani, Ashkan & Farahani, Reza Zanjirani, 2015. "Concurrent design of product family and supply chain network considering quality and price," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 18-35.
    18. Tammy Drezner & Morton O’Kelly & Zvi Drezner, 2023. "Multipurpose shopping trips and location," Annals of Operations Research, Springer, vol. 321(1), pages 191-208, February.
    19. Tammy Drezner, 2009. "Location of retail facilities under conditions of uncertainty," Annals of Operations Research, Springer, vol. 167(1), pages 107-120, March.
    20. Saidani, Nasreddine & Chu, Feng & Chen, Haoxun, 2012. "Competitive facility location and design with reactions of competitors already in the market," European Journal of Operational Research, Elsevier, vol. 219(1), pages 9-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:167:y:2009:i:1:p:297-306:10.1007/s10479-008-0337-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.