Advanced Search
MyIDEAS: Login

Bootstrap in Markov-sequences based on estimates of transition density

Contents:

Author Info

  • M. Rajarshi
Registered author(s):

    Abstract

    No abstract is available for this item.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://hdl.handle.net/10.1007/BF00050835
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Springer in its journal Annals of the Institute of Statistical Mathematics.

    Volume (Year): 42 (1990)
    Issue (Month): 2 (June)
    Pages: 253-268

    as in new window
    Handle: RePEc:spr:aistmt:v:42:y:1990:i:2:p:253-268

    Contact details of provider:
    Web page: http://www.springerlink.com/link.asp?id=102845

    Order Information:
    Web: http://link.springer.de/orders.htm

    Related research

    Keywords: Variance estimation; Bootstrap; non-para-metrics; Markov-sequences;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Parr, William C., 1985. "The bootstrap: Some large sample theory and connections with robustness," Statistics & Probability Letters, Elsevier, vol. 3(2), pages 97-100, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Stanislav Anatolyev & Andrey Vasnev, 2002. "Markov chain approximation in bootstrapping autoregressions," Economics Bulletin, AccessEcon, vol. 3(19), pages 1-8.
    2. Fernandes, Marcelo, 2006. "Financial crashes as endogenous jumps: estimation, testing and forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 30(1), pages 111-141, January.
    3. A. Talha Yalta, 2013. "Small Sample Bootstrap Inference of Level Relationships in the Presence of Autocorrelated Errors: A Large Scale Simulation Study and an Application in Energy Demand," Working Papers 1301, TOBB University of Economics and Technology, Department of Economics.
    4. Manzan, Sebastiano & Zerom, Dawit, 2008. "A bootstrap-based non-parametric forecast density," International Journal of Forecasting, Elsevier, vol. 24(3), pages 535-550.
    5. Bertail, Patrice & Clemencon, Stephan, 2008. "Approximate regenerative-block bootstrap for Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2739-2756, January.
    6. Manzan, S. & Zerom, D., 2005. "A Multi-Step Forecast Density," CeNDEF Working Papers 05-05, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    7. Neumann, Michael H., 1997. "On robustness of model-based bootstrap schemes in nonparametric time series analysis," SFB 373 Discussion Papers 1997,88, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. repec:ebl:ecbull:v:3:y:2002:i:19:p:1-8 is not listed on IDEAS
    9. Efstathios Paparoditis & Dimitris Politis, 2000. "The Local Bootstrap for Kernel Estimators under General Dependence Conditions," Annals of the Institute of Statistical Mathematics, Springer, vol. 52(1), pages 139-159, March.
    10. Corradi, Valentina & Distaso, Walter & Fernandes, Marcelo, 2012. "International market links and volatility transmission," Journal of Econometrics, Elsevier, vol. 170(1), pages 117-141.
    11. Sherman, Michael & Carlstein, Edward, 2004. "Confidence intervals based on estimators with unknown rates of convergence," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 123-139, May.
    12. Cerqueti, Roy & Falbo, Paolo & Pelizzari, Cristian, 2013. "Relevant States and Memory in Markov Chain Bootstrapping and Simulation," MPRA Paper 46250, University Library of Munich, Germany.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:42:y:1990:i:2:p:253-268. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.