IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v15y2021i1d10.1007_s11634-019-00383-6.html
   My bibliography  Save this article

From-below Boolean matrix factorization algorithm based on MDL

Author

Listed:
  • Tatiana Makhalova

    (National Research University Higher School of Economics
    University of Lorraine)

  • Martin Trnecka

    (Palacký University Olomouc)

Abstract

During the past few years Boolean matrix factorization (BMF) has become an important direction in data analysis. The minimum description length principle (MDL) was successfully adapted in BMF for the model order selection. Nevertheless, a BMF algorithm performing good results w.r.t. standard measures in BMF is missing. In this paper, we propose a novel from-below Boolean matrix factorization algorithm based on formal concept analysis. The algorithm utilizes the MDL principle as a criterion for the factor selection. On various experiments we show that the proposed algorithm outperforms—from different standpoints—existing state-of-the-art BMF algorithms.

Suggested Citation

  • Tatiana Makhalova & Martin Trnecka, 2021. "From-below Boolean matrix factorization algorithm based on MDL," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 37-56, March.
  • Handle: RePEc:spr:advdac:v:15:y:2021:i:1:d:10.1007_s11634-019-00383-6
    DOI: 10.1007/s11634-019-00383-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-019-00383-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-019-00383-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Govaert, Gérard & Nadif, Mohamed, 2008. "Block clustering with Bernoulli mixture models: Comparison of different approaches," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3233-3245, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    2. Haedo, Christian & Mouchart, Michel, 2019. "Two-mode clustering through profiles of regions and sectors," LIDAM Discussion Papers ISBA 2019014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. van Dijk, A. & van Rosmalen, J.M. & Paap, R., 2009. "A Bayesian approach to two-mode clustering," Econometric Institute Research Papers EI 2009-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Bhatia, Parmeet Singh & Iovleff, Serge & Govaert, Gérard, 2017. "blockcluster: An R Package for Model-Based Co-Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i09).
    5. Gérard Govaert & Mohamed Nadif, 2018. "Mutual information, phi-squared and model-based co-clustering for contingency tables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 455-488, September.
    6. Vu, Duy & Aitkin, Murray, 2015. "Variational algorithms for biclustering models," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 12-24.
    7. Haedo, Christian & Mouchart, Michel, 2018. "Automatic biclustering of regions and sectors," LIDAM Discussion Papers ISBA 2018026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Bergé, Laurent R. & Bouveyron, Charles & Corneli, Marco & Latouche, Pierre, 2019. "The latent topic block model for the co-clustering of textual interaction data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 247-270.
    9. Alessandro Casa & Charles Bouveyron & Elena Erosheva & Giovanna Menardi, 2021. "Co-clustering of Time-Dependent Data via the Shape Invariant Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 626-649, October.
    10. C. Biernacki & J. Jacques & C. Keribin, 2023. "A Survey on Model-Based Co-Clustering: High Dimension and Estimation Challenges," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 332-381, July.
    11. Francesca Martella & Maurizio Vichi, 2012. "Clustering microarray data using model-based double K -means," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(9), pages 1853-1869, April.
    12. Roy Costilla & Ivy Liu & Richard Arnold & Daniel Fernández, 2019. "Bayesian model-based clustering for longitudinal ordinal data," Computational Statistics, Springer, vol. 34(3), pages 1015-1038, September.
    13. Gupta, Mayetri, 2014. "An evolutionary Monte Carlo algorithm for Bayesian block clustering of data matrices," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 375-391.
    14. Karim El Moutaouakil & Vasile Palade & Safaa Safouan & Anas Charroud, 2023. "FP-Conv-CM: Fuzzy Probabilistic Convolution C-Means," Mathematics, MDPI, vol. 11(8), pages 1-30, April.
    15. Goffinet, Etienne & Lebbah, Mustapha & Azzag, Hanane & Loïc, Giraldi & Coutant, Anthony, 2022. "Functional non-parametric latent block model: A multivariate time series clustering approach for autonomous driving validation," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    16. Chabert-Liddell, Saint-Clair & Barbillon, Pierre & Donnet, Sophie & Lazega, Emmanuel, 2021. "A stochastic block model approach for the analysis of multilevel networks: An application to the sociology of organizations," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    17. El Assaad, Hani & Samé, Allou & Govaert, Gérard & Aknin, Patrice, 2016. "A variational Expectation–Maximization algorithm for temporal data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 206-228.
    18. Christian Haedo & Michel Mouchart, 2022. "Two-mode clustering through profiles of regions and sectors," Empirical Economics, Springer, vol. 63(4), pages 1971-1996, October.
    19. Michael Salter-Townshend & Thomas Murphy, 2014. "Mixtures of biased sentiment analysers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 85-103, March.
    20. Li, Gen, 2020. "Generalized Co-clustering Analysis via Regularized Alternating Least Squares," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:15:y:2021:i:1:d:10.1007_s11634-019-00383-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.