IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i9p1853-1869.html
   My bibliography  Save this article

Clustering microarray data using model-based double K -means

Author

Listed:
  • Francesca Martella
  • Maurizio Vichi

Abstract

The microarray technology allows the measurement of expression levels of thousands of genes simultaneously. The dimension and complexity of gene expression data obtained by microarrays create challenging data analysis and management problems ranging from the analysis of images produced by microarray experiments to biological interpretation of results. Therefore, statistical and computational approaches are beginning to assume a substantial position within the molecular biology area. We consider the problem of simultaneously clustering genes and tissue samples (in general conditions) of a microarray data set. This can be useful for revealing groups of genes involved in the same molecular process as well as groups of conditions where this process takes place. The need of finding a subset of genes and tissue samples defining a homogeneous block had led to the application of double clustering techniques on gene expression data. Here, we focus on an extension of standard K -means to simultaneously cluster observations and features of a data matrix, namely double K -means introduced by Vichi (2000). We introduce this model in a probabilistic framework and discuss the advantages of using this approach. We also develop a coordinate ascent algorithm and test its performance via simulation studies and real data set. Finally, we validate the results obtained on the real data set by building resampling confidence intervals for block centroids.

Suggested Citation

  • Francesca Martella & Maurizio Vichi, 2012. "Clustering microarray data using model-based double K -means," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(9), pages 1853-1869, April.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:9:p:1853-1869
    DOI: 10.1080/02664763.2012.683172
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.683172
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.683172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rocci, Roberto & Vichi, Maurizio, 2008. "Two-mode multi-partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1984-2003, January.
    2. Govaert, Gérard & Nadif, Mohamed, 2008. "Block clustering with Bernoulli mixture models: Comparison of different approaches," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3233-3245, February.
    3. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    4. M. Bittner & P. Meltzer & Y. Chen & Y. Jiang & E. Seftor & M. Hendrix & M. Radmacher & R. Simon & Z. Yakhini & A. Ben-Dor & N. Sampas & E. Dougherty & E. Wang & F. Marincola & C. Gooden & J. Lueders &, 2000. "Molecular classification of cutaneous malignant melanoma by gene expression profiling," Nature, Nature, vol. 406(6795), pages 536-540, August.
    5. Li, Jia & Zha, Hongyuan, 2006. "Two-way Poisson mixture models for simultaneous document classification and word clustering," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 163-180, January.
    6. Bertrand, P. & Bel Mufti, G., 2006. "Loevinger's measures of rule quality for assessing cluster stability," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 992-1015, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gérard Govaert & Mohamed Nadif, 2018. "Mutual information, phi-squared and model-based co-clustering for contingency tables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 455-488, September.
    2. Rocci, Roberto & Vichi, Maurizio, 2008. "Two-mode multi-partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1984-2003, January.
    3. Carlo Cavicchia & Maurizio Vichi & Giorgia Zaccaria, 2022. "Gaussian mixture model with an extended ultrametric covariance structure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 399-427, June.
    4. Melnykov, Volodymyr, 2013. "On the distribution of posterior probabilities in finite mixture models with application in clustering," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 175-189.
    5. Alessandro Casa & Charles Bouveyron & Elena Erosheva & Giovanna Menardi, 2021. "Co-clustering of Time-Dependent Data via the Shape Invariant Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 626-649, October.
    6. Laura Bocci & Donatella Vicari, 2019. "ROOTCLUS: Searching for “ROOT CLUSters” in Three-Way Proximity Data," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 941-985, December.
    7. Melnykov, Volodymyr & Melnykov, Igor, 2012. "Initializing the EM algorithm in Gaussian mixture models with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1381-1395.
    8. Tritchler, David & Fallah, Shafagh & Beyene, Joseph, 2005. "A spectral clustering method for microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 63-76, April.
    9. Gupta, Mayetri, 2014. "An evolutionary Monte Carlo algorithm for Bayesian block clustering of data matrices," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 375-391.
    10. Chabert-Liddell, Saint-Clair & Barbillon, Pierre & Donnet, Sophie & Lazega, Emmanuel, 2021. "A stochastic block model approach for the analysis of multilevel networks: An application to the sociology of organizations," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    11. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    12. Alicja Grześkowiak, 2016. "Assessment of Participation in Cultural Activities in Poland by Selected Multivariate Methods," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 3, January -.
    13. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    14. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    15. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    16. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    17. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    18. Irene Vrbik & Paul McNicholas, 2015. "Fractionally-Supervised Classification," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 359-381, October.
    19. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    20. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:9:p:1853-1869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.