IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v237y2023i6p1199-1208.html
   My bibliography  Save this article

Acceptance reliability sampling plan for items from heterogeneous populations

Author

Listed:
  • Ji Hwan Cha
  • Maxim Finkelstein

Abstract

Existing reliability sampling plans reported in the literature assume that the items belong to homogeneous populations. However, at many practical instances, a population of the manufactured items is a mixed one. In this paper, we consider the case when a population consists of items that belong to two subpopulations, that is, the subpopulation with better reliability characteristics and that with worse reliability characteristics. Thus, a variables acceptance reliability sampling plan is proposed and its properties are investigated under this assumption. A sequential numerical algorithm for finding the parameters of the proposed sampling plan is developed and applied. Furthermore, the lifetime of the population before the acceptance test and that of the population which have passed the sampling test are stochastically compared.

Suggested Citation

  • Ji Hwan Cha & Maxim Finkelstein, 2023. "Acceptance reliability sampling plan for items from heterogeneous populations," Journal of Risk and Reliability, , vol. 237(6), pages 1199-1208, December.
  • Handle: RePEc:sae:risrel:v:237:y:2023:i:6:p:1199-1208
    DOI: 10.1177/1748006X221116243
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221116243
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221116243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ji Hwan Cha & Maxim Finkelstein, 2019. "Stochastic modeling of quality of systems operating in a heterogeneous environment," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(6), pages 1344-1365, November.
    2. Ji Hwan Cha & Maxim Finkelstein, 2022. "A new warranty policy for heterogeneous items subject to monotone degradation processes," Journal of Risk and Reliability, , vol. 236(1), pages 55-65, February.
    3. Muhammad Aslam & Muhammad Azam & Chi‐Hyuck Jun, 2015. "Various repetitive sampling plans using process capability index of multiple quality characteristics," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(6), pages 823-835, November.
    4. Ji Hwan Cha & F. G. Badía, 2021. "Variables acceptance reliability sampling plan based on degradation test," Statistical Papers, Springer, vol. 62(5), pages 2227-2245, October.
    5. Min Kim & Bong-Jin Yum, 2011. "Life test sampling plans for Weibull distributed lifetimes under accelerated hybrid censoring," Statistical Papers, Springer, vol. 52(2), pages 327-342, May.
    6. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2021. "Optimal warranty policy with inspection for heterogeneous, stochastically degrading items," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1142-1152.
    7. Tzong-Ru Tsai & Shuo-Jye Wu, 2006. "Acceptance sampling based on truncated life tests for generalized Rayleigh distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(6), pages 595-600.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji Hwan Cha & F. G. Badía, 2021. "Variables acceptance reliability sampling plan based on degradation test," Statistical Papers, Springer, vol. 62(5), pages 2227-2245, October.
    2. Zhao, Xiujie & Liu, Bin & Xu, Jianyu & Wang, Xiao-Lin, 2023. "Imperfect maintenance policies for warranted products under stochastic performance degradation," European Journal of Operational Research, Elsevier, vol. 308(1), pages 150-165.
    3. Rao G. Srinivasa & Kantam R. R. L., 2010. "Acceptance Sampling Plans from Truncated Life Tests Based on the Log-Logistic Distributions for Percentiles," Stochastics and Quality Control, De Gruyter, vol. 25(2), pages 153-167, January.
    4. Kumar Mahesh & P C Ramyamol, 2016. "Design of Optimal Reliability Acceptance Sampling Plans for Exponential Distribution," Stochastics and Quality Control, De Gruyter, vol. 31(1), pages 23-36, June.
    5. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    6. Dai, Anshu & Wang, Xin & Li, Yu & Li, Ting & He, Shuguang, 2023. "Design of a performance-based warranty policy with replacement–repair strategy and cumulative cost threshold," International Journal of Production Economics, Elsevier, vol. 255(C).
    7. Jose K. K. & Sivadas Remya, 2015. "Negative Binomial Marshall–Olkin Rayleigh Distribution and Its Applications," Stochastics and Quality Control, De Gruyter, vol. 30(2), pages 89-98, December.
    8. Ram Niwas & M. S. Kadyan, 2022. "A bi-objective inspection policy for a repairable engineering system with failure free warranty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 881-891, April.
    9. Harsh Tripathi & Mahendra Saha & Sanku Dey, 2022. "A new approach of time truncated chain sampling inspection plan and its applications," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2307-2326, October.
    10. Muhammad Aslam & Chi-Hyuck Jun, 2009. "A group acceptance sampling plan for truncated life test having Weibull distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(9), pages 1021-1027.
    11. Manoj Rastogi & Yogesh Tripathi, 2013. "Inference on unknown parameters of a Burr distribution under hybrid censoring," Statistical Papers, Springer, vol. 54(3), pages 619-643, August.
    12. Lijun Shang & Xiguang Yu & Liying Wang & Yongjun Du, 2022. "Design of Random Warranty and Maintenance Policy: From a Perspective of the Life Cycle," Mathematics, MDPI, vol. 10(20), pages 1-22, October.
    13. M. Aslam & C. -H. Jun & M. Ahmad, 2010. "Design of a time-truncated double sampling plan for a general life distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1369-1379.
    14. Hashemi, M. & Asadi, M. & Tavangar, M., 2022. "Optimal maintenance strategies for coherent systems: A warranty dependent approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    15. Liu, Peng & Wang, Guanjun, 2023. "Generalized non-renewing replacement warranty policy and an age-based post-warranty maintenance strategy," European Journal of Operational Research, Elsevier, vol. 311(2), pages 567-580.
    16. Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    17. Jose K. K. & Paul Albin, 2018. "Reliability Test Plans for Percentiles Based on the Harris Generalized Linear Exponential Distribution," Stochastics and Quality Control, De Gruyter, vol. 33(1), pages 61-70, June.
    18. Muhammad Aslam & Chi-Hyuck Jun, 2010. "A double acceptance sampling plan for generalized log-logistic distributions with known shape parameters," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 405-414.
    19. Safaei, Fatemeh & Taghipour, Sharareh, 2022. "Optimal preventive maintenance for repairable products with three types of failures sold under a renewable hybrid FRW/PRW policy," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    20. Sukhdev Singh & Yogesh Tripathi, 2015. "Reliability sampling plans for a lognormal distribution under progressive first-failure censoring with cost constraint," Statistical Papers, Springer, vol. 56(3), pages 773-817, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:237:y:2023:i:6:p:1199-1208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.