IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v236y2022i3p495-507.html
   My bibliography  Save this article

An AdaBoost-based tree augmented naive Bayesian classifier for transient stability assessment of power systems

Author

Listed:
  • Huimin Wang
  • Zhaojun Steven Li

Abstract

By focusing on the accuracy limitations of the naive Bayesian classifier in the transient stability assessment of power systems, a tree augmented naive Bayesian (TAN) classifier is adopted for the power system transient stability assessment. The adaptive Boosting (AdaBoost) algorithm is used in the TAN classifier to form an AdaBoost-based tree augmented naive Bayesian (ATAN) classifier for further classification performance improvement. To construct the ATAN classifier, eight attributes that reasonably reflect the transient stability or transient instability of a power system are selected as inputs of the proposed classifier. In addition, the class-attribute interdependence maximization (CAIM) algorithm is used to discretize the attributes. Then, the operating mechanism of the power system is used to obtain the dependencies between the attributes, and the parameters of the ATAN classifier are learned according to the Bayes’ theorem and the criterion of maximizing a posterior estimation. Four evaluation indicators of the ATAN classifier are used, that is, the value of Kappa, the area under the receiver operating characteristic curve (AUC), F 1 score, and the average evaluation indicator. Lastly, experiments are implemented on the IEEE 3-generator 9-bus system and IEEE 10-generator 39-bus system. The simulation results show that the ATAN classifier can significantly improve the classification performance of the transient stability assessment of the power system.

Suggested Citation

  • Huimin Wang & Zhaojun Steven Li, 2022. "An AdaBoost-based tree augmented naive Bayesian classifier for transient stability assessment of power systems," Journal of Risk and Reliability, , vol. 236(3), pages 495-507, June.
  • Handle: RePEc:sae:risrel:v:236:y:2022:i:3:p:495-507
    DOI: 10.1177/1748006X211047308
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X211047308
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X211047308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guo, Jian & (Steven) Li, Zhaojun & (Judy) Jin, Jionghua, 2018. "System reliability assessment with multilevel information using the Bayesian melding method," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 146-158.
    2. Huang, Xiaolin & Shi, Lei & Suykens, Johan A.K., 2014. "Asymmetric least squares support vector machine classifiers," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 395-405.
    3. Dan Huang & Qiyu Chen & Shiying Ma & Yichi Zhang & Shuyong Chen, 2018. "Wide-Area Measurement—Based Model-Free Approach for Online Power System Transient Stability Assessment," Energies, MDPI, vol. 11(4), pages 1-20, April.
    4. Ropero, R.F. & Renooij, S. & van der Gaag, L.C., 2018. "Discretizing environmental data for learning Bayesian-network classifiers," Ecological Modelling, Elsevier, vol. 368(C), pages 391-403.
    5. Shi, Zhongtuo & Yao, Wei & Zeng, Lingkang & Wen, Jianfeng & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu, 2020. "Convolutional neural network-based power system transient stability assessment and instability mode prediction," Applied Energy, Elsevier, vol. 263(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biyun Chen & Haoying Chen & Yiyi Zhang & Junhui Zhao & Emad Manla, 2019. "Risk Assessment for the Power Grid Dispatching Process Considering the Impact of Cyber Systems," Energies, MDPI, vol. 12(6), pages 1-18, March.
    2. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Tao Zhou & Zhong Chen & Siqi Bu & Haoran Tang & Yi Liu, 2018. "Eigen-Analysis Considering Time-Delay and Data-Loss of WAMS and ITS Application to WADC Design Based on Damping Torque Analysis," Energies, MDPI, vol. 11(11), pages 1-15, November.
    4. Xu, Yingchun & Yao, Wen & Zheng, Xiaohu & Chen, Xiaoqian, 2020. "An iterative information integration method for multi-level system reliability analysis based on Bayesian Melding Method," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Nastaran Gholizadeh & Petr Musilek, 2021. "Distributed Learning Applications in Power Systems: A Review of Methods, Gaps, and Challenges," Energies, MDPI, vol. 14(12), pages 1-18, June.
    6. José A. Sáez, 2022. "Noise Models in Classification: Unified Nomenclature, Extended Taxonomy and Pragmatic Categorization," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    7. Gang Du & Xi Liang & Xiaoling Ouyang & Chunming Wang, 0. "Risk prediction of hypertension complications based on the intelligent algorithm optimized Bayesian network," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
    8. Ruan, Haokai & Wei, Zhongbao & Shang, Wentao & Wang, Xuechao & He, Hongwen, 2023. "Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging," Applied Energy, Elsevier, vol. 336(C).
    9. Jude Suchithra & Duane Robinson & Amin Rajabi, 2023. "Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    10. Tayo Uthman Badrudeen & Nnamdi I. Nwulu & Saheed Lekan Gbadamosi, 2023. "Neural Network Based Approach for Steady-State Stability Assessment of Power Systems," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    11. Rosa Fernández Ropero & María Julia Flores & Rafael Rumí, 2022. "Bayesian Networks for Preprocessing Water Management Data," Mathematics, MDPI, vol. 10(10), pages 1-18, May.
    12. Wenxin Zhu & Yunyan Song & Yingyuan Xiao, 2018. "A New Support Vector Machine Plus with Pinball Loss," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 52-70, April.
    13. Ferencek Aljaž & Kofjač Davorin & Škraba Andrej & Sašek Blaž & Borštnar Mirjana Kljajić, 2020. "Deep Learning Predictive Models for Terminal Call Rate Prediction during the Warranty Period," Business Systems Research, Sciendo, vol. 11(2), pages 36-50, October.
    14. Sun, Chenhao & Xu, Hao & Zeng, Xiangjun & Wang, Wen & Jiang, Fei & Yang, Xin, 2023. "A vulnerability spatiotemporal distribution prognosis framework for integrated energy systems within intricate data scenes according to importance-fuzzy high-utility pattern identification," Applied Energy, Elsevier, vol. 344(C).
    15. Yingchun Xu & Xiaohu Zheng & Wen Yao & Ning Wang & Xiaoqian Chen, 2021. "A sequential multi-prior integration and updating method for complex multi-level system based on Bayesian melding method," Journal of Risk and Reliability, , vol. 235(5), pages 863-876, October.
    16. Li, Yang & Zhang, Meng & Chen, Chen, 2022. "A Deep-Learning intelligent system incorporating data augmentation for Short-Term voltage stability assessment of power systems," Applied Energy, Elsevier, vol. 308(C).
    17. Huang, Wanjun & Zhang, Xinran & Zheng, Weiye, 2021. "Resilient power network structure for stable operation of energy systems: A transfer learning approach," Applied Energy, Elsevier, vol. 296(C).
    18. Izzuddin Fathin Azhar & Lesnanto Multa Putranto & Roni Irnawan, 2022. "Development of PMU-Based Transient Stability Detection Methods Using CNN-LSTM Considering Time Series Data Measurement," Energies, MDPI, vol. 15(21), pages 1-20, November.
    19. Gang Du & Xi Liang & Xiaoling Ouyang & Chunming Wang, 2021. "Risk prediction of hypertension complications based on the intelligent algorithm optimized Bayesian network," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 966-987, November.
    20. Heungseok Lee & Jongju Kim & June Ho Park & Sang-Hwa Chung, 2023. "Power System Transient Stability Assessment Using Convolutional Neural Network and Saliency Map," Energies, MDPI, vol. 16(23), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:236:y:2022:i:3:p:495-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.