IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v233y2019i6p1086-1098.html
   My bibliography  Save this article

Inverse Gaussian–based model with measurement errors for degradation analysis

Author

Listed:
  • Xudan Chen
  • Guoxun Ji
  • Xinli Sun
  • Zhen Li

Abstract

To build more credible degradation models, it is necessary to consider measurement errors in degradation analysis. This article proposes an inverse Gaussian-based state space model with measurement errors that can capture the unit-to-unit variability of the degradation rate by incorporating a random effect. Then, the lifetime distribution and alarm probabilities are derived. Under the non-Gaussian assumptions, conventional parameter estimation algorithms cannot be applied directly. Therefore, an improved expectation–maximization algorithm that is combined with particle methods is developed to estimate parameters. Finally, this article concludes with a simulation study and two case applications to demonstrate the applicability and advantages of the proposed model.

Suggested Citation

  • Xudan Chen & Guoxun Ji & Xinli Sun & Zhen Li, 2019. "Inverse Gaussian–based model with measurement errors for degradation analysis," Journal of Risk and Reliability, , vol. 233(6), pages 1086-1098, December.
  • Handle: RePEc:sae:risrel:v:233:y:2019:i:6:p:1086-1098
    DOI: 10.1177/1748006X19860682
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X19860682
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X19860682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiao, 2010. "Wiener processes with random effects for degradation data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 340-351, February.
    2. Godsill, Simon J. & Doucet, Arnaud & West, Mike, 2004. "Monte Carlo Smoothing for Nonlinear Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 156-168, January.
    3. Laurent Bordes & Christian Paroissin & Ali Salami, 2016. "Parametric inference in a perturbed gamma degradation process," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(9), pages 2730-2747, May.
    4. Yin Shu & Qianmei Feng & Edward P.C. Kao & Hao Liu, 2016. "Lévy-driven non-Gaussian Ornstein–Uhlenbeck processes for degradation-based reliability analysis," IISE Transactions, Taylor & Francis Journals, vol. 48(11), pages 993-1003, November.
    5. Zhi‐Sheng Ye & Min Xie, 2015. "Rejoinder to ‘Stochastic modelling and analysis of degradation for highly reliable products’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 35-36, January.
    6. Pulcini, Gianpaolo, 2016. "A perturbed gamma process with statistically dependent measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 296-306.
    7. Peng, Weiwen & Li, Yan-Feng & Yang, Yuan-Jian & Huang, Hong-Zhong & Zuo, Ming J., 2014. "Inverse Gaussian process models for degradation analysis: A Bayesian perspective," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 175-189.
    8. Zhi‐Sheng Ye & Min Xie, 2015. "Stochastic modelling and analysis of degradation for highly reliable products," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 16-32, January.
    9. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    10. Ye, Zhi-Sheng & Chen, Nan & Shen, Yan, 2015. "A new class of Wiener process models for degradation analysis," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 58-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.
    2. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    3. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    4. Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.
    5. Hu, Jiawen & Chen, Piao, 2020. "Predictive maintenance of systems subject to hard failure based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    7. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Ling, M.H. & Ng, H.K.T. & Tsui, K.L., 2019. "Bayesian and likelihood inferences on remaining useful life in two-phase degradation models under gamma process," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 77-85.
    10. Weichao Yu & Xianbin Zheng & Weihe Huang & Qingwen Cai & Jie Guo & Jili Xu & Yang Liu & Jing Gong & Hong Yang, 2022. "A Data-Driven Methodology for the Reliability Analysis of the Natural Gas Compressor Unit Considering Multiple Failure Modes," Energies, MDPI, vol. 15(10), pages 1-18, May.
    11. Duan, Fengjun & Wang, Guanjun, 2022. "Bayesian analysis for the transformed exponential dispersion process with random effects," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Junyu Guo & Hong-Zhong Huang & Weiwen Peng & Jie Zhou, 2019. "Bayesian information fusion for degradation analysis of deteriorating products with individual heterogeneity," Journal of Risk and Reliability, , vol. 233(4), pages 615-622, August.
    13. Wang, Jun & Zhu, Xiaoyan, 2021. "Joint optimization of condition-based maintenance and inventory control for a k-out-of-n:F system of multi-state degrading components," European Journal of Operational Research, Elsevier, vol. 290(2), pages 514-529.
    14. Gao, Hongda & Cui, Lirong & Dong, Qinglai, 2020. "Reliability modeling for a two-phase degradation system with a change point based on a Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    15. Liu, Di & Wang, Shaoping & Zhang, Chao & Tomovic, Mileta, 2018. "Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 25-38.
    16. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    17. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    18. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    19. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    20. Wang, Huan & Wang, Guan-jun & Duan, Feng-jun, 2016. "Planning of step-stress accelerated degradation test based on the inverse Gaussian process," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 97-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:233:y:2019:i:6:p:1086-1098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.