IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v227y2013i2p162-172.html
   My bibliography  Save this article

Reliability demonstration based on accelerated degradation testing for unknown model parameters

Author

Listed:
  • Wei Luo
  • Chun-Hua Zhang
  • Xun Chen
  • Yuan-Yuan Tan

Abstract

Conventional reliability demonstration tests are becoming increasingly difficult to apply for high-reliability and long-lifetime products owing to the excessive test duration, which conflicts with the marketplace demands for decreased development time. Accelerated degradation testing has been strongly recommended to reduce test time, but few studies employ this method for reliability demonstrations. In this article, a test methodology based on accelerated degradation testing is developed to demonstrate the reliability target for the case in which the model parameters for the test plan design are unknown. In the proposed procedure, step-stress accelerated degradation testing is employed as a preliminary test to estimate the model parameters. The data from step-stress accelerated degradation testing are converted based on equivalent degradation criterion and then used to make decisions by the method of two steps accelerated reliability demonstration test. If there are not enough converted data to make a decision, an accelerated degradation testing as a complementary test is conducted to complete the demonstration according to the estimates of the model parameters from the preliminary test; the two steps accelerated reliability demonstration test method is applied. The proposed methodology incorporates step-stress accelerated degradation testing with two steps accelerated reliability demonstration test to permit the test duration to be reduced as much as possible. It is useful to demonstrate a high-reliability target at long mission times within a feasible test duration when the design parameters are unknown.

Suggested Citation

  • Wei Luo & Chun-Hua Zhang & Xun Chen & Yuan-Yuan Tan, 2013. "Reliability demonstration based on accelerated degradation testing for unknown model parameters," Journal of Risk and Reliability, , vol. 227(2), pages 162-172, April.
  • Handle: RePEc:sae:risrel:v:227:y:2013:i:2:p:162-172
    DOI: 10.1177/1748006X13477324
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X13477324
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X13477324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Siu-Keung Tse & Chunyan Yang, 2003. "Reliability sampling plans for the Weibull distribution under Type II progressive censoring with binomial removals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(6), pages 709-718.
    2. Seo, J.H. & Jung, M. & Kim, C.M., 2009. "Design of accelerated life test sampling plans with a nonconstant shape parameter," European Journal of Operational Research, Elsevier, vol. 197(2), pages 659-666, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Wei & Zhang, Chun-hua & Chen, Xun & Tan, Yuan-yuan, 2015. "Accelerated reliability demonstration under competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 75-84.
    2. Kim, Seong-Joon & Mun, Byeong Min & Bae, Suk Joo, 2019. "A cost-driven reliability demonstration plan based on accelerated degradation tests," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 226-239.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Wei & Zhang, Chun-hua & Chen, Xun & Tan, Yuan-yuan, 2015. "Accelerated reliability demonstration under competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 75-84.
    2. Chien-Wei Wu & Zih-Huei Wang, 2017. "Developing a variables multiple dependent state sampling plan with simultaneous consideration of process yield and quality loss," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2351-2364, April.
    3. Min Kim & Bong-Jin Yum, 2011. "Life test sampling plans for Weibull distributed lifetimes under accelerated hybrid censoring," Statistical Papers, Springer, vol. 52(2), pages 327-342, May.
    4. Wang, Liang & Wu, Shuo-Jye & Zhang, Chunfang & Dey, Sanku & Tripathi, Yogesh Mani, 2022. "Analysis for constant-stress model on multicomponent system from generalized inverted exponential distribution with stress dependent parameters," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 301-316.
    5. David Han, 2014. "Optimum Constant-stress and Step-stress Accelerated Life Tests under Time and Cost Constraints," Working Papers 0173mss, College of Business, University of Texas at San Antonio.
    6. Wu, Chien-Wei & Aslam, Muhammad & Jun, Chi-Hyuck, 2012. "Variables sampling inspection scheme for resubmitted lots based on the process capability index Cpk," European Journal of Operational Research, Elsevier, vol. 217(3), pages 560-566.
    7. Fernández, Arturo J. & Pérez-González, Carlos J. & Aslam, Muhammad & Jun, Chi-Hyuck, 2011. "Design of progressively censored group sampling plans for Weibull distributions: An optimization problem," European Journal of Operational Research, Elsevier, vol. 211(3), pages 525-532, June.
    8. Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    9. Conghua Cheng & Jinyuan Chen & Jianming Bai, 2013. "Exact inferences of the two-parameter exponential distribution and Pareto distribution with censored data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1464-1479, July.
    10. Sukhdev Singh & Yogesh Tripathi, 2015. "Reliability sampling plans for a lognormal distribution under progressive first-failure censoring with cost constraint," Statistical Papers, Springer, vol. 56(3), pages 773-817, August.
    11. Wang, Guodong & He, Zhen & Xue, Li & Cui, Qingan & Lv, Shanshan & Zhou, Panpan, 2017. "Bootstrap analysis of designed experiments for reliability improvement with a non-constant scale parameter," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 114-121.
    12. Min Kim & Bong-Jin Yum, 2009. "Reliability acceptance sampling plans for the Weibull distribution under accelerated Type-I censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(1), pages 11-20.
    13. Fernández, Arturo J., 2015. "Optimum attributes component test plans for k-out-of-n:F Weibull systems using prior information," European Journal of Operational Research, Elsevier, vol. 240(3), pages 688-696.
    14. Wei Cui & Zai-zai Yan & Xiu-yun Peng & Gai-mei Zhang, 2022. "Reliability analysis of log-normal distribution with nonconstant parameters under constant-stress model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 818-831, April.
    15. Qin, Shuidan & Wang, Bing Xing & Wu, Wenhui & Ma, Chao, 2022. "The prediction intervals of remaining useful life based on constant stress accelerated life test data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 747-755.
    16. Wang, Liang & Tripathi, Yogesh Mani & Lodhi, Chandrakant & Zuo, Xuanjia, 2022. "Inference for constant-stress Weibull competing risks model under generalized progressive hybrid censoring," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 70-83.
    17. Fernández, Arturo J. & Correa-Álvarez, Cristian D. & Pericchi, Luis R., 2020. "Balancing producer and consumer risks in optimal attribute testing: A unified Bayesian/Frequentist design," European Journal of Operational Research, Elsevier, vol. 286(2), pages 576-587.
    18. Wu, Shuo-Jye & Huang, Syuan-Rong, 2012. "Progressively first-failure censored reliability sampling plans with cost constraint," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2018-2030.
    19. Maram Salem & Zeinab Amin & Moshira Ismail, 2020. "Progressively Censored Reliability Sampling Plans Based on Mean Product Lifetime," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 1-33, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:227:y:2013:i:2:p:162-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.