IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v37y2017i5p523-533.html
   My bibliography  Save this article

Assessing the Expected Value of Research Studies in Reducing Uncertainty and Improving Implementation Dynamics

Author

Listed:
  • Sabine E. Grimm
  • Simon Dixon
  • John W. Stevens

Abstract

Background. With low implementation of cost-effective health technologies being a problem in many health systems, it is worth considering the potential effects of research on implementation at the time of health technology assessment. Meaningful and realistic implementation estimates must be of dynamic nature. Objective. To extend existing methods for assessing the value of research studies in terms of both reduction of uncertainty and improvement in implementation by considering diffusion based on expert beliefs with and without further research conditional on the strength of evidence. Methods . We use expected value of sample information and expected value of specific implementation measure concepts accounting for the effects of specific research studies on implementation and the reduction of uncertainty. Diffusion theory and elicitation of expert beliefs about the shape of diffusion curves inform implementation dynamics. We illustrate use of the resulting dynamic expected value of research in a preterm birth screening technology and results are compared with those from a static analysis. Results. Allowing for diffusion based on expert beliefs had a significant impact on the expected value of research in the case study, suggesting that mistakes are made where static implementation levels are assumed. Incorporating the effects of research on implementation resulted in an increase in the expected value of research compared to the expected value of sample information alone. Conclusions. Assessing the expected value of research in reducing uncertainty and improving implementation dynamics has the potential to complement currently used analyses in health technology assessments, especially in recommendations for further research. The combination of expected value of research, diffusion theory, and elicitation described in this article is an important addition to the existing methods of health technology assessment.

Suggested Citation

  • Sabine E. Grimm & Simon Dixon & John W. Stevens, 2017. "Assessing the Expected Value of Research Studies in Reducing Uncertainty and Improving Implementation Dynamics," Medical Decision Making, , vol. 37(5), pages 523-533, July.
  • Handle: RePEc:sae:medema:v:37:y:2017:i:5:p:523-533
    DOI: 10.1177/0272989X16686766
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X16686766
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X16686766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    2. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    3. Simon Walker & Mark Sculpher & Karl Claxton & Steve Palmer, 2012. "Coverage with evidence development, only in research, risk sharing or patient access scheme? A framework for coverage decisions," Working Papers 077cherp, Centre for Health Economics, University of York.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathyn Vervaart & Mark Strong & Karl P. Claxton & Nicky J. Welton & Torbjørn Wisløff & Eline Aas, 2022. "An Efficient Method for Computing Expected Value of Sample Information for Survival Data from an Ongoing Trial," Medical Decision Making, , vol. 42(5), pages 612-625, July.
    2. Anna Heath, 2022. "Calculating Expected Value of Sample Information Adjusting for Imperfect Implementation," Medical Decision Making, , vol. 42(5), pages 626-636, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasper M. Johannesen & Karl Claxton & Mark J. Sculpher & Allan J. Wailoo, 2018. "How to design the cost‐effectiveness appraisal process of new healthcare technologies to maximise population health: A conceptual framework," Health Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 41-54, February.
    2. Matthew Franklin & James Lomas & Simon Walker & Tracey Young, 2019. "An Educational Review About Using Cost Data for the Purpose of Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 37(5), pages 631-643, May.
    3. Claire Rothery & Karl Claxton & Stephen Palmer & David Epstein & Rosanna Tarricone & Mark Sculpher, 2017. "Characterising Uncertainty in the Assessment of Medical Devices and Determining Future Research Needs," Health Economics, John Wiley & Sons, Ltd., vol. 26(S1), pages 109-123, February.
    4. Hester V Eeren & Saskia J Schawo & Ron H J Scholte & Jan J V Busschbach & Leona Hakkaart, 2015. "Value of Information Analysis Applied to the Economic Evaluation of Interventions Aimed at Reducing Juvenile Delinquency: An Illustration," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-15, July.
    5. Sabine Elisabeth Grimm & Mark Strong & Alan Brennan & Allan J. Wailoo, 2017. "The HTA Risk Analysis Chart: Visualising the Need for and Potential Value of Managed Entry Agreements in Health Technology Assessment," PharmacoEconomics, Springer, vol. 35(12), pages 1287-1296, December.
    6. Oscar Gutiérrez & Francisco Ruiz-Aliseda, 2011. "Real options with unknown-date events," Annals of Finance, Springer, vol. 7(2), pages 171-198, May.
    7. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    8. Shari, Babajide Epe & Dioha, Michael O. & Abraham-Dukuma, Magnus C. & Sobanke, Victor O. & Emodi, Nnaemeka V., 2022. "Clean cooking energy transition in Nigeria: Policy implications for Developing countries," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 319-343.
    9. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    10. Arantzazu Arrospide & Oliver Ibarrondo & Iván Castilla & Igor Larrañaga & Javier Mar, 2022. "Development and Validation of a Discrete Event Simulation Model to Evaluate the Cardiovascular Impact of Population Policies for Obesity," Medical Decision Making, , vol. 42(2), pages 241-254, February.
    11. Tiruwork B. Tibebu & Eric Hittinger & Qing Miao & Eric Williams, 2024. "Adoption Model Choice Affects the Optimal Subsidy for Residential Solar," Energies, MDPI, vol. 17(3), pages 1-19, February.
    12. Simon P. Anderson & André de Palma, 2012. "Competition for attention in the Information (overload) Age," RAND Journal of Economics, RAND Corporation, vol. 43(1), pages 1-25, March.
    13. Mark Oppe & Daniela Ortín-Sulbarán & Carlos Vila Silván & Anabel Estévez-Carrillo & Juan M. Ramos-Goñi, 2021. "Cost-effectiveness of adding Sativex® spray to spasticity care in Belgium: using bootstrapping instead of Monte Carlo simulation for probabilistic sensitivity analyses," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 22(5), pages 711-721, July.
    14. Kaitlyn Hastings & Clara Marquina & Jedidiah Morton & Dina Abushanab & Danielle Berkovic & Stella Talic & Ella Zomer & Danny Liew & Zanfina Ademi, 2022. "Projected New-Onset Cardiovascular Disease by Socioeconomic Group in Australia," PharmacoEconomics, Springer, vol. 40(4), pages 449-460, April.
    15. Van, Tien Linh Cao & Barthelmes, Lukas & Gnann, Till & Speth, Daniel & Kagerbauer, Martin, 2021. "Addressing the gaps in market diffusion modeling of electrical vehicles: A case study from Germany for the integration of environmental policy measures," Working Papers "Sustainability and Innovation" S05/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    16. Ma, Peng, 2021. "Optimal generic and brand advertising efforts in a decentralized supply chain considering customer surplus," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    17. Sergio Currarini & Carmen Marchiori & Alessandro Tavoni, 2016. "Network Economics and the Environment: Insights and Perspectives," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(1), pages 159-189, September.
    18. Klingler, Anna-Lena & Luthander, Rasmus, 2018. "Market diffusion of residential PV and battery systems driven by self-consumption: A comparison of Sweden and Germany," Working Papers "Sustainability and Innovation" S18/2018, Fraunhofer Institute for Systems and Innovation Research (ISI).
    19. Robertson, Alastair & Soopramanien, Didier & Fildes, Robert, 2007. "A segment-based analysis of Internet service adoption among UK households," Technology in Society, Elsevier, vol. 29(3), pages 339-350.
    20. Edgardo Arturo Ayala Gaytán, 2009. "Social network externalities and price dispersion in online markets," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:37:y:2017:i:5:p:523-533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.