IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v32y2005i3p381-401.html
   My bibliography  Save this article

Necessary Space—Time Conditions for Human Interaction

Author

Listed:
  • Harvey J Miller

    (Department of Geography, University of Utah, 260 S. Central Campus Dr. Room 270, Salt Lake City, UT 84112-9155, USA)

Abstract

Key scientific and application questions concern the relationships between individual-level activities and their effects on broader human phenomena, such as transportation systems and cities. Continuing advances in geographic information science, location-aware technologies, and geosimulation methods offer great potential for observational and simulation studies of human activities at high levels of spatiotemporal resolution. The author contributes by developing rigorous statements of the necessary space–time conditions for human interaction by extending a measurement theory for time geography. The extended measurement theory identifies necessary conditions both for physical and for virtual interaction. The theory suggests elegant and tractable solutions that can be derived from data available from location-aware technologies or geosimulation methods. These conditions and their solutions could be used to infer the possibilities for human interaction from detailed space–time trajectories and prisms generated from observation or simulation studies.

Suggested Citation

  • Harvey J Miller, 2005. "Necessary Space—Time Conditions for Human Interaction," Environment and Planning B, , vol. 32(3), pages 381-401, June.
  • Handle: RePEc:sae:envirb:v:32:y:2005:i:3:p:381-401
    DOI: 10.1068/b31154
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b31154
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b31154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan Veldhuisen & Harry Timmermans & Loek Kapoen, 2000. "RAMBLAS: A Regional Planning Model Based on the Microsimulation of Daily Activity Travel Patterns," Environment and Planning A, , vol. 32(3), pages 427-443, March.
    2. Landis, John D., 1994. "The California Urban Futures Model: A New Generation of Metropolitan Simulation Models," University of California Transportation Center, Working Papers qt9pb6g3g6, University of California Transportation Center.
    3. Morton E. O'Kelly & Harvey J. Miller, 1991. "Solution Strategies For The Single Facility Minimax Hub Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 70(4), pages 367-380, October.
    4. Donald G. Janelle & David C. Hodge, 2000. "Information, Place, Cyberspace, and Accessibility," Advances in Spatial Science, in: Donald G. Janelle & David C. Hodge (ed.), Information, Place, and Cyberspace, chapter 1, pages 3-11, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Downs, Joni A. & Horner, Mark W., 2012. "Probabilistic potential path trees for visualizing and analyzing vehicle tracking data," Journal of Transport Geography, Elsevier, vol. 23(C), pages 72-80.
    2. Juan Antonio Carrasco & Bernie Hogan & Barry Wellman & Eric J. Miller, 2008. "Agency In Social Activity Interactions: The Role Of Social Networks In Time And Space," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 99(5), pages 562-583, December.
    3. Farber, Steven & Páez, Antonio, 2011. "Running to stay in place: the time-use implications of automobile oriented land-use and travel," Journal of Transport Geography, Elsevier, vol. 19(4), pages 782-793.
    4. Lin, Tao & Wang, Donggen, 2015. "Tradeoffs between in- and out-of-residential neighborhood locations for discretionary activities and time use: do social contexts matter?," Journal of Transport Geography, Elsevier, vol. 47(C), pages 119-127.
    5. Farber, Steven & O'Kelly, Morton & Miller, Harvey J. & Neutens, Tijs, 2015. "Measuring segregation using patterns of daily travel behavior: A social interaction based model of exposure," Journal of Transport Geography, Elsevier, vol. 49(C), pages 26-38.
    6. Shaw, Shih-Lung & Yu, Hongbo, 2009. "A GIS-based time-geographic approach of studying individual activities and interactions in a hybrid physical–virtual space," Journal of Transport Geography, Elsevier, vol. 17(2), pages 141-149.
    7. Yin, Ling & Shaw, Shih-Lung & Yu, Hongbo, 2011. "Potential effects of ICT on face-to-face meeting opportunities: a GIS-based time-geographic approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 422-433.
    8. Sui, Daniel, 2012. "Looking through Hägerstrand’s dual vistas: towards a unifying framework for time geography," Journal of Transport Geography, Elsevier, vol. 23(C), pages 5-16.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee-Gosselin, Martin & Miranda-Moreno, Luis F., 2009. "What is different about urban activities of those with access to ICTs? Some early evidence from Québec, Canada," Journal of Transport Geography, Elsevier, vol. 17(2), pages 104-114.
    2. Lin, Huiyan & Lu, Kang Shou & Espey, Molly & Allen, Jeffery, 2005. "Modeling Urban Sprawl and Land Use Change in a Coastal Area-- A Neural Network Approach," 2005 Annual meeting, July 24-27, Providence, RI 19364, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    4. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    5. Ravulaparthy, Srinath & Goulias, Konstadinos G., 2011. "Forecasting with Dynamic Microsimulation: Design, Implementation, and Demonstration," University of California Transportation Center, Working Papers qt2x12q5pv, University of California Transportation Center.
    6. Bayarma Alexander & Christa Hubers & Tim Schwanen & Martin Dijst & Dick Ettema, 2011. "Anything, Anywhere, Anytime? Developing Indicators to Assess the Spatial and Temporal Fragmentation of Activities," Environment and Planning B, , vol. 38(4), pages 678-705, August.
    7. Tijs Neutens & Tim Schwanen & Frank Witlox & Philippe De Maeyer, 2010. "Equity of Urban Service Delivery: A Comparison of Different Accessibility Measures," Environment and Planning A, , vol. 42(7), pages 1613-1635, July.
    8. Calderwood, Eric & Freathy, Paul, 2014. "Consumer mobility in the Scottish isles: The impact of internet adoption upon retail travel patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 192-203.
    9. Gargi Chaudhuri & Keith C Clarke, 2015. "On the Spatiotemporal Dynamics of the Coupling between Land Use and Road Networks: Does Political History Matter?," Environment and Planning B, , vol. 42(1), pages 133-156, February.
    10. Roy, P. & Martínez, A.J. & Miscione, G. & Zuidgeest, M.H.P. & van Maarseveen, M.F.A.M., 2012. "Using Social Network Analysis to profile people based on their e-communication and travel balance," Journal of Transport Geography, Elsevier, vol. 24(C), pages 111-122.
    11. Michael B. Teitz, 1996. "American Planning in the 1990s: Evolution, Debate and Challenge," Urban Studies, Urban Studies Journal Limited, vol. 33(4-5), pages 649-671, May.
    12. Alexander, Bayarma & Ettema, Dick & Dijst, Martin, 2010. "Fragmentation of work activity as a multi-dimensional construct and its association with ICT, employment and sociodemographic characteristics," Journal of Transport Geography, Elsevier, vol. 18(1), pages 55-64.
    13. Eghbal Akhlaghi, Vahid & Campbell, Ann Melissa, 2022. "The two-echelon island fuel distribution problem," European Journal of Operational Research, Elsevier, vol. 302(3), pages 999-1017.
    14. Frank Primerano & Michael Taylor & Ladda Pitaksringkarn & Peter Tisato, 2008. "Defining and understanding trip chaining behaviour," Transportation, Springer, vol. 35(1), pages 55-72, January.
    15. Zimu Jia & Long Chen & Jingjia Chen & Guowei Lyu & Ding Zhou & Ying Long, 2020. "Urban modeling for streets using vector cellular automata: Framework and its application in Beijing," Environment and Planning B, , vol. 47(8), pages 1418-1439, October.
    16. Weiguo Liu & Karen C Seto, 2008. "Using the ART-MMAP Neural Network to Model and Predict Urban Growth: A Spatiotemporal Data Mining Approach," Environment and Planning B, , vol. 35(2), pages 296-317, April.
    17. Ben-Elia, Eran & Alexander, Bayarma & Hubers, Christa & Ettema, Dick, 2014. "Activity fragmentation, ICT and travel: An exploratory Path Analysis of spatiotemporal interrelationships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 68(C), pages 56-74.
    18. Li Yin & Brian Muller, 2007. "Residential Location and the Biophysical Environment: Exurban Development Agents in a Heterogeneous Landscape," Environment and Planning B, , vol. 34(2), pages 279-295, April.
    19. O Berman & Z Drezner & G O Wesolowsky, 2008. "The multiple location of transfer points," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(6), pages 805-811, June.
    20. Ivonne Audirac, 2005. "Information Technology and Urban Form: Challenges to Smart Growth," International Regional Science Review, , vol. 28(2), pages 119-145, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:32:y:2005:i:3:p:381-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.