Advanced Search
MyIDEAS: Login

Multiple Logistic Regression Model To Predict Risk Factors Of Oral Health Diseases

Contents:

Author Info

  • Shivalingappa B Javali

    (SDM College of Dental Sciences, Karnataka, India)

  • Parameshwar V Pandit

    (Bangalore University, Karnataka, India)

Registered author(s):

    Abstract

    Purpose: To analysis the dependence of oral health diseases i.e. dental caries and periodontal disease on considering the number of risk factors through the applications of logistic regression model. Method: The cross sectional study involves a systematic random sample of 1760 permanent dentition aged between 18-40 years in Dharwad, Karnataka, India. Dharwad is situated in North Karnataka. The mean age was 34.26±7.28. The risk factors of dental caries and periodontal disease were established by multiple logistic regression model using SPSS statistical software. Results: The factors like frequency of brushing, timings of cleaning teeth and type of toothpastes are significant persistent predictors of dental caries and periodontal disease. The log likelihood value of full model is –1013.1364 and Akaike’s Information Criterion (AIC) is 1.1752 as compared to reduced regression model are -1019.8106 and 1.1748 respectively for dental caries. But, the log likelihood value of full model is –1085.7876 and AIC is 1.2577 followed by reduced regression model are -1019.8106 and 1.1748 respectively for periodontal disease. The area under Receiver Operating Characteristic (ROC) curve for the dental caries is 0.7509 (full model) and 0.7447 (reduced model); the ROC for the periodontal disease is 0.6128 (full model) and 0.5821 (reduced model). Conclusions: The frequency of brushing, timings of cleaning teeth and type of toothpastes are main significant risk factors of dental caries and periodontal disease. The fitting performance of reduced logistic regression model is slightly a better fit as compared to full logistic regression model in identifying the these risk factors for both dichotomous dental caries and periodontal disease.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.revistadestatistica.ro/Articole/2012/art7en_rrs_5_2012.pdf
    Download Restriction: no

    Bibliographic Info

    Article provided by Romanian Statistical Review in its journal Romanian Statistical Review.

    Volume (Year): 60 (2012)
    Issue (Month): 5 (June)
    Pages: 73-86

    as in new window
    Handle: RePEc:rsr:journl:v:60:y:2012:i:5:p:73-86

    Contact details of provider:
    Postal: 16 Libertatii Avenue, Sector 5, Bucureşti, Code 70542
    Phone: 004 021 336 2691
    Fax: 004 021 3124873
    Email:
    Web page: http://www.revistadestatistica.ro
    More information through EDIRC

    Related research

    Keywords: Dental Caries; periodontal disease; Akaike Information Criterion; Receiver Operating Characteristic; Full model; Reduced model;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:rsr:journl:v:60:y:2012:i:5:p:73-86. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Adrian Visoiu).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.