IDEAS home Printed from https://ideas.repec.org/a/rfa/aefjnl/v9y2022i4p3646.html
   My bibliography  Save this article

Two Models of Speculative Bubbles Dynamics for Cryptocurrency Prices

Author

Listed:
  • Mikhail Perepelitsa

Abstract

The problem of investing into a cryptocurrency market requires good understanding of the processes that regulate the price of the currency. In this paper we offer a view of the cryptocurrency market as an environment for realization of self-organized speculative schemes that result in the formation of a characteristic price bubble. We use a microscale, agent-based model to simulate the system behavior and derive a macroscale ordinary differential equation (ODE) model to estimate the price and the return rates observed in the simulated agent-based model. We provide a formula for the total risk of the system expressed as a sum of two independent components, one being characteristic of the price bubble and the other of the investor behavior.

Suggested Citation

  • Mikhail Perepelitsa, 2022. "Two Models of Speculative Bubbles Dynamics for Cryptocurrency Prices," Applied Economics and Finance, Redfame publishing, vol. 9(4), pages 3646-3646, November.
  • Handle: RePEc:rfa:aefjnl:v:9:y:2022:i:4:p:3646
    as

    Download full text from publisher

    File URL: https://redfame.com/journal/index.php/aef/article/download/5738/5922
    Download Restriction: no

    File URL: https://redfame.com/journal/index.php/aef/article/view/5738
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Misha Perepelitsa & Ilya Timofeyev, 2022. "Self-sustained price bubbles driven by digital currency innovations and adaptive market behavior," SN Business & Economics, Springer, vol. 2(3), pages 1-15, March.
    2. Perepelitsa, Misha & Timofeyev, Ilya, 2019. "Asynchronous stochastic price pump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 356-364.
    3. Levy, Moshe & Levy, Haim & Solomon, Sorin, 1994. "A microscopic model of the stock market : Cycles, booms, and crashes," Economics Letters, Elsevier, vol. 45(1), pages 103-111, May.
    4. Olivier J. Blanchard & Mark W. Watson, 1982. "Bubbles, Rational Expectations and Financial Markets," NBER Working Papers 0945, National Bureau of Economic Research, Inc.
    5. Levy, Moshe & Solomon, Sorin, 1997. "New evidence for the power-law distribution of wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 242(1), pages 90-94.
    6. Levy, Haim & Levy, Moshe & Solomon, Sorin, 2000. "Microscopic Simulation of Financial Markets," Elsevier Monographs, Elsevier, edition 1, number 9780124458901.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Misha Perepelitsa & Ilya Timofeyev, 2020. "Self-sustained price bubbles driven by Bitcoin innovations and adaptive behavior," Papers 2012.14860, arXiv.org.
    2. Misha Perepelitsa, 2021. "Psychological dimension of adaptive trading in cryptocurrency markets," Papers 2109.12166, arXiv.org.
    3. Misha Perepelitsa, 2021. "Investing in crypto: speculative bubbles and cyclic stochastic price pumps," Papers 2111.11315, arXiv.org, revised Oct 2022.
    4. Misha Perepelitsa & Ilya Timofeyev, 2022. "Self-sustained price bubbles driven by digital currency innovations and adaptive market behavior," SN Business & Economics, Springer, vol. 2(3), pages 1-15, March.
    5. Misha Perepelitsa, 2018. "A model of adaptive, market behavior generating positive returns, volatility and system risk," Papers 1809.09601, arXiv.org.
    6. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    7. Perepelitsa, Misha & Timofeyev, Ilya, 2019. "Asynchronous stochastic price pump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 356-364.
    8. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    9. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    10. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    11. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    12. Misha Perepelitsa & Ilya Timofeyev, 2018. "Asynchronous stochastic price pump," Papers 1809.09273, arXiv.org.
    13. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    14. Mikhail Anufriev & Giulio Bottazzi, 2005. "Price and Wealth Dynamics in a Speculative Market with an Arbitrary Number of Generic Technical Traders," LEM Papers Series 2005/06, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    15. Maximilian Beikirch & Torsten Trimborn, 2020. "Novel Insights in the Levy-Levy-Solomon Agent-Based Economic Market Model," Papers 2002.10222, arXiv.org.
    16. Baosheng Yuan & Kan Chen, 2005. "Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations," Papers physics/0506224, arXiv.org.
    17. Guo, Xu & McAleer, Michael & Wong, Wing-Keung & Zhu, Lixing, 2017. "A Bayesian approach to excess volatility, short-term underreaction and long-term overreaction during financial crises," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 346-358.
    18. Marco Raberto & Silvano Cincotti & Sergio Focardi & Michele Marchesi, 2003. "Traders' Long-Run Wealth in an Artificial Financial Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 255-272, October.
    19. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    20. Anufriev, M. & Dindo, P.D.E., 2007. "Wealth Selection in a Financial Market with Heterogeneous Agents," CeNDEF Working Papers 07-10, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rfa:aefjnl:v:9:y:2022:i:4:p:3646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Redfame publishing (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.