IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0245904.html
   My bibliography  Save this article

The predictive capacity of GARCH-type models in measuring the volatility of crypto and world currencies

Author

Listed:
  • Viviane Naimy
  • Omar Haddad
  • Gema Fernández-Avilés
  • Rim El Khoury

Abstract

This paper provides a thorough overview and further clarification surrounding the volatility behavior of the major six cryptocurrencies (Bitcoin, Ripple, Litecoin, Monero, Dash and Dogecoin) with respect to world currencies (Euro, British Pound, Canadian Dollar, Australian Dollar, Swiss Franc and the Japanese Yen), the relative performance of diverse GARCH-type specifications namely the SGARCH, IGARCH (1,1), EGARCH (1,1), GJR-GARCH (1,1), APARCH (1,1), TGARCH (1,1) and CGARCH (1,1), and the forecasting performance of the Value at Risk measure. The sampled period extends from October 13th 2015 till November 18th 2019. The findings evidenced the superiority of the IGARCH model, in both the in-sample and the out-of-sample contexts, when it deals with forecasting the volatility of world currencies, namely the British Pound, Canadian Dollar, Australian Dollar, Swiss Franc and the Japanese Yen. The CGARCH alternative modeled the Euro almost perfectly during both periods. Advanced GARCH models better depicted asymmetries in cryptocurrencies’ volatility and revealed persistence and “intensifying” levels in their volatility. The IGARCH was the best performing model for Monero. As for the remaining cryptocurrencies, the GJR-GARCH model proved to be superior during the in-sample period while the CGARCH and TGARCH specifications were the optimal ones in the out-of-sample interval. The VaR forecasting performance is enhanced with the use of the asymmetric GARCH models. The VaR results provided a very accurate measure in determining the level of downside risk exposing the selected exchange currencies at all confidence levels. However, the outcomes were far from being uniform for the selected cryptocurrencies: convincing for Dash and Dogcoin, acceptable for Litecoin and Monero and unconvincing for Bitcoin and Ripple, where the (optimal) model was not rejected only at the 99% confidence level.

Suggested Citation

  • Viviane Naimy & Omar Haddad & Gema Fernández-Avilés & Rim El Khoury, 2021. "The predictive capacity of GARCH-type models in measuring the volatility of crypto and world currencies," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-17, January.
  • Handle: RePEc:plo:pone00:0245904
    DOI: 10.1371/journal.pone.0245904
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245904
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0245904&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0245904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Urquhart, Andrew, 2017. "Price clustering in Bitcoin," Economics Letters, Elsevier, vol. 159(C), pages 145-148.
    2. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. I," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
    3. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    4. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Mehrzad Asaad Sajadi & Pouya Khodaee & Ehsan Hajizadeh & Sabri Farhadi & Sohaib Dastgoshade & Bo Du, 2022. "Deep Learning-Based Methods for Forecasting Brent Crude Oil Return Considering COVID-19 Pandemic Effect," Energies, MDPI, vol. 15(21), pages 1-23, October.
    2. Samir Poudel & Rajendra Paudyal & Burak Cankaya & Naomi Sterlingsdottir & Marissa Murphy & Shital Pandey & Jorge Vargas & Khem Poudel, 2023. "Cryptocurrency price and volatility predictions with machine learning," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 642-660, December.
    3. Nora CHIRIȚĂ & Camelia DELCEA & Ionuț NICA & Simona-Liliana CRĂCIUNESCU (PARAMON) & Ștefan-Andrei IONESCU, 2023. "Financial contagion and identifying speculative frenzies: Unraveling price bubbles in cryptocurrency markets," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(3(636), A), pages 21-40, Autumn.
    4. Micu Raluca & Dumitrescu Dalina, 2022. "Study regarding the volatility of main cryptocurrencies," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 16(1), pages 179-187, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    2. Saha, Kunal, 2018. "An investigation into the dependence structure of major cryptocurrencies," EconStor Preprints 181878, ZBW - Leibniz Information Centre for Economics.
    3. Gkillas, Konstantinos & Katsiampa, Paraskevi, 2018. "An application of extreme value theory to cryptocurrencies," Economics Letters, Elsevier, vol. 164(C), pages 109-111.
    4. Dean Fantazzini & Stephan Zimin, 2020. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
    5. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    6. Kristjanpoller, Werner & Bouri, Elie & Takaishi, Tetsuya, 2020. "Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    8. Thomas Walther & Tony Klein, 2018. "Exogenous Drivers of Cryptocurrency Volatility - A Mixed Data Sampling Approach To Forecasting," Working Papers on Finance 1815, University of St. Gallen, School of Finance.
    9. Thomas Dimpfl & Stefania Odelli, 2020. "Bitcoin Price Risk—A Durations Perspective," JRFM, MDPI, vol. 13(7), pages 1-18, July.
    10. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    11. Vidal-Tomás, David & Ibañez, Ana, 2018. "Semi-strong efficiency of Bitcoin," Finance Research Letters, Elsevier, vol. 27(C), pages 259-265.
    12. Köchling, Gerrit & Schmidtke, Philipp & Posch, Peter N., 2020. "Volatility forecasting accuracy for Bitcoin," Economics Letters, Elsevier, vol. 191(C).
    13. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    14. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2022. "Cryptocurrency returns under empirical asset pricing," International Review of Financial Analysis, Elsevier, vol. 82(C).
    15. Liu, Weiyi, 2019. "Portfolio diversification across cryptocurrencies," Finance Research Letters, Elsevier, vol. 29(C), pages 200-205.
    16. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    17. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    18. Angerer, Martin & Hoffmann, Christian Hugo & Neitzert, Florian & Kraus, Sascha, 2021. "Objective and subjective risks of investing into cryptocurrencies," Finance Research Letters, Elsevier, vol. 40(C).
    19. Nadir Khan & Muhammad Zohair Durrani & Naila Mushtaq & S M Nabeel ul Haq & Babar Ijaz, 2022. "The Relationships among Cryptocurrencies: A Granger Causality Analysis," iRASD Journal of Economics, International Research Alliance for Sustainable Development (iRASD), vol. 4(2), pages 264-274, June.
    20. Sercan Demiralay & Selçuk Bayracı, 2021. "Should stock investors include cryptocurrencies in their portfolios after all? Evidence from a conditional diversification benefits measure," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 6188-6204, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0245904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.