IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0242010.html
   My bibliography  Save this article

Learning from urban form to predict building heights

Author

Listed:
  • Nikola Milojevic-Dupont
  • Nicolai Hans
  • Lynn H Kaack
  • Marius Zumwald
  • François Andrieux
  • Daniel de Barros Soares
  • Steffen Lohrey
  • Peter-Paul Pichler
  • Felix Creutzig

Abstract

Understanding cities as complex systems, sustainable urban planning depends on reliable high-resolution data, for example of the building stock to upscale region-wide retrofit policies. For some cities and regions, these data exist in detailed 3D models based on real-world measurements. However, they are still expensive to build and maintain, a significant challenge, especially for small and medium-sized cities that are home to the majority of the European population. New methods are needed to estimate relevant building stock characteristics reliably and cost-effectively. Here, we present a machine learning based method for predicting building heights, which is based only on open-access geospatial data on urban form, such as building footprints and street networks. The method allows to predict building heights for regions where no dedicated 3D models exist currently. We train our model using building data from four European countries (France, Italy, the Netherlands, and Germany) and find that the morphology of the urban fabric surrounding a given building is highly predictive of the height of the building. A test on the German state of Brandenburg shows that our model predicts building heights with an average error well below the typical floor height (about 2.5 m), without having access to training data from Germany. Furthermore, we show that even a small amount of local height data obtained by citizens substantially improves the prediction accuracy. Our results illustrate the possibility of predicting missing data on urban infrastructure; they also underline the value of open government data and volunteered geographic information for scientific applications, such as contextual but scalable strategies to mitigate climate change.

Suggested Citation

  • Nikola Milojevic-Dupont & Nicolai Hans & Lynn H Kaack & Marius Zumwald & François Andrieux & Daniel de Barros Soares & Steffen Lohrey & Peter-Paul Pichler & Felix Creutzig, 2020. "Learning from urban form to predict building heights," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-22, December.
  • Handle: RePEc:plo:pone00:0242010
    DOI: 10.1371/journal.pone.0242010
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242010
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0242010&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0242010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Felix Creutzig & Aneeque Javaid & Zakia Soomauroo & Steffen Lohrey & Nikola Milojevic-Dupont & Anjali Ramakrishnan & Mahendra Sethi & Lijing Liu & Leila Niamir & Christopher Bren d’Amour & Ulf Weddige, 2020. "Fair street space allocation: ethical principles and empirical insights," Transport Reviews, Taylor & Francis Journals, vol. 40(6), pages 711-733, November.
    2. Felix Creutzig & Peter Agoston & Jan C. Minx & Josep G. Canadell & Robbie M. Andrew & Corinne Le Quéré & Glen P. Peters & Ayyoob Sharifi & Yoshiki Yamagata & Shobhakar Dhakal, 2016. "Urban infrastructure choices structure climate solutions," Nature Climate Change, Nature, vol. 6(12), pages 1054-1056, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Venerandi & Giovanni Fusco & Matteo Caglioni, 2023. "Exploring the Form of a Smart City District: A Morphometric Comparison with Examples of Previous Design Models," Land, MDPI, vol. 12(12), pages 1-21, December.
    2. Benjamin Herfort & Sven Lautenbach & João Porto de Albuquerque & Jennings Anderson & Alexander Zipf, 2023. "A spatio-temporal analysis investigating completeness and inequalities of global urban building data in OpenStreetMap," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristian S. Nielsen & Kimberly A. Nicholas & Felix Creutzig & Thomas Dietz & Paul C. Stern, 2021. "The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions," Nature Energy, Nature, vol. 6(11), pages 1011-1016, November.
    2. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    3. Adeline Gu'eret & Wolf-Peter Schill & Carlos Gaete-Morales, 2024. "Not flexible enough? Impacts of electric carsharing on a power sector with variable renewables," Papers 2402.19380, arXiv.org.
    4. Remme, Devyn & Sareen, Siddharth & Haarstad, Håvard, 2022. "Who benefits from sustainable mobility transitions? Social inclusion, populist resistance and elite capture in Bergen, Norway," Journal of Transport Geography, Elsevier, vol. 105(C).
    5. Katharina Bohnenberger, 2020. "Money, Vouchers, Public Infrastructures? A Framework for Sustainable Welfare Benefits," Sustainability, MDPI, vol. 12(2), pages 1-30, January.
    6. Thomas Wiedmann & Guangwu Chen & Anne Owen & Manfred Lenzen & Michael Doust & John Barrett & Kristian Steele, 2021. "Three‐scope carbon emission inventories of global cities," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 735-750, June.
    7. Soomauroo, Zakia & Blechinger, Philipp & Creutzig, Felix, 2023. "Electrifying public transit benefits public finances in small island developing states," Transport Policy, Elsevier, vol. 138(C), pages 45-59.
    8. Mutanga, Shingirirai S. & Quitzow, Rainer & Steckel, Jan Christoph, 2018. "Tackling energy, climate and development challenges in Africa," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-14.
    9. Haustein, Sonja & Kroesen, Maarten, 2022. "Shifting to more sustainable mobility styles: A latent transition approach," Journal of Transport Geography, Elsevier, vol. 103(C).
    10. Yiming Wang & Pengcheng Xiang, 2018. "Urban Sprawl Sustainability of Mountainous Cities in the Context of Climate Change Adaptability Using a Coupled Coordination Model: A Case Study of Chongqing, China," Sustainability, MDPI, vol. 11(1), pages 1-20, December.
    11. Yuqiu Jia & Zhenhua Zheng & Qi Zhang & Min Li & Xiaofang Liu, 2020. "Associations of Spatial Aggregation between Neighborhood Facilities and the Population of Age Groups Based on Points-of-Interest Data," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    12. David Frantz & Franz Schug & Dominik Wiedenhofer & André Baumgart & Doris Virág & Sam Cooper & Camila Gómez-Medina & Fabian Lehmann & Thomas Udelhoven & Sebastian Linden & Patrick Hostert & Helmut Hab, 2023. "Unveiling patterns in human dominated landscapes through mapping the mass of US built structures," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Vivien Fisch-Romito, 2021. "Embodied carbon dioxide emissions to provide high access levels to basic infrastructure around the world," Post-Print hal-03353919, HAL.
    14. Liu, Yinshan & Wang, Yuanfeng & Shi, Chengcheng & Zhang, Weijun & Luo, Wei & Wang, Jingjing & Li, Keping & Yeung, Ngai & Kite, Steve, 2022. "Assessing the CO2 reduction target gap and sustainability for bridges in China by 2040," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. John E. Fernández & Marcela Angel, 2020. "Ecological City-States in an Era of Environmental Disaster: Security, Climate Change and Biodiversity," Sustainability, MDPI, vol. 12(14), pages 1-21, July.
    16. De Gruyter, Chris & Zahraee, Seyed Mojib & Young, William, 2022. "Understanding the allocation and use of street space in areas of high people activity," Journal of Transport Geography, Elsevier, vol. 101(C).
    17. Tang, Zhipeng & Yu, Haojie & Zou, Jialing, 2023. "Neighbor impacts of environmental regulation: The case of low-carbon pilot program in China," Energy, Elsevier, vol. 276(C).
    18. Hu, Jia-Wei & Javaid, Aneeque & Creutzig, Felix, 2021. "Leverage points for accelerating adoption of shared electric cars: Perceived benefits and environmental impact of NEVs," Energy Policy, Elsevier, vol. 155(C).
    19. Gössling, Stefan & Humpe, Andreas & Hologa, Rafael & Riach, Nils & Freytag, Tim, 2022. "Parking violations as an economic gamble for public space," Transport Policy, Elsevier, vol. 116(C), pages 248-257.
    20. André Hartmann & Martin Behnisch & Robert Hecht & Gotthard Meinel, 2024. "Prediction of residential and non-residential building usage in Germany based on a novel nationwide reference data set," Environment and Planning B, , vol. 51(1), pages 216-233, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0242010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.