IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0230805.html
   My bibliography  Save this article

The innovation value chain of patents: Breakthrough in the patent commercialization trap in Chinese universities

Author

Listed:
  • Hong Gong
  • Libing Nie
  • Yuyao Peng
  • Shan Peng
  • Yushan Liu

Abstract

The innovation value chain is an effective tool for analysing innovation activities and reflects the process of value creation and increase in innovation activities. From the perspective of innovation value chains, we divided patent innovation activities into three stages: knowledge innovation stage, applied research stage and patent commercialization stage. The panel data from 64 universities directly managed by the Ministry of Education from 2009 to 2017 were used and several conclusions were drawn: 1) In the initial stage of knowledge innovation, the fundamental research fund plays a crucial promoting role, and knowledge innovation achievements are mainly published academic papers. 2) In the applied research stage, the knowledge innovation in the early stage and the fund investment in R&D activities have a significant positive effect on the patent output of universities, but the personnel investment has a negative effect. 3) In the final stage of patent commercialization, preliminary research results have a positive impact on patent commercialization, whose marginal effect depends on the industry-university-research relationship, external competition and reputation of the university. The evidence showed that there is a feedback channel between university patent commercialization and knowledge innovation, and new knowledge generated by the interaction with the outside world in the process of patent commercialization was transmitted to the subject of knowledge innovation through this channel, forming a virtuous dynamic cycle. By analysing the driving factors of the value chain of patent innovation in colleges and universities, we provided empirical evidence for the operation mechanism and policy formulation of college patents in China.

Suggested Citation

  • Hong Gong & Libing Nie & Yuyao Peng & Shan Peng & Yushan Liu, 2020. "The innovation value chain of patents: Breakthrough in the patent commercialization trap in Chinese universities," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-15, March.
  • Handle: RePEc:plo:pone00:0230805
    DOI: 10.1371/journal.pone.0230805
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230805
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0230805&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0230805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Meyer, 2006. "Are Co-Active Researchers on Top of their Class? An Exploratory Comparison of Inventor-Authors with their Non-Inventing Peers in Nano-Science and Technology," SPRU Working Paper Series 144, SPRU - Science Policy Research Unit, University of Sussex Business School.
    2. Siegel, Donald S. & Waldman, David & Link, Albert, 2003. "Assessing the impact of organizational practices on the relative productivity of university technology transfer offices: an exploratory study," Research Policy, Elsevier, vol. 32(1), pages 27-48, January.
    3. Hong Gong & Shan Peng, 2018. "Effects of patent policy on innovation outputs and commercialization: evidence from universities in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 687-703, November.
    4. Meyer, Martin, 2006. "Are patenting scientists the better scholars?: An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology," Research Policy, Elsevier, vol. 35(10), pages 1646-1662, December.
    5. Roper, Stephen & Du, Jun & Love, James H., 2008. "Modelling the innovation value chain," Research Policy, Elsevier, vol. 37(6-7), pages 961-977, July.
    6. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    7. Paula Stephan & Shiferaw Gurmu & Albert Sumell & Grant Black, 2007. "Who'S Patenting In The University? Evidence From The Survey Of Doctorate Recipients," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 16(2), pages 71-99.
    8. Sengupta, Abhijit & Ray, Amit S., 2017. "University research and knowledge transfer: A dynamic view of ambidexterity in british universities," Research Policy, Elsevier, vol. 46(5), pages 881-897.
    9. Wesley David Sine & Scott Shane & Dante Di Gregorio, 2003. "The Halo Effect and Technology Licensing: The Influence of Institutional Prestige on the Licensing of University Inventions," Management Science, INFORMS, vol. 49(4), pages 478-496, April.
    10. Gulbrandsen, Magnus & Smeby, Jens-Christian, 2005. "Industry funding and university professors' research performance," Research Policy, Elsevier, vol. 34(6), pages 932-950, August.
    11. Andrea Bonaccorsi & Cinzia Daraio & Léopold Simar, 2006. "Advanced indicators of productivity of universitiesAn application of robust nonparametric methods to Italian data," Scientometrics, Springer;Akadémiai Kiadó, vol. 66(2), pages 389-410, February.
    12. Yixin Dai & David Popp & Stuart Bretschneider, 2005. "Institutions and intellectual property: The influence of institutional forces on university patenting," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 24(3), pages 579-598.
    13. Fabrizio, Kira R. & Di Minin, Alberto, 2008. "Commercializing the laboratory: Faculty patenting and the open science environment," Research Policy, Elsevier, vol. 37(5), pages 914-931, June.
    14. Yutao Sun & Chen Zhang & Robert A. W. Kok, 2020. "The role of research outcome quality in the relationship between university research collaboration and technology transfer: empirical results from China," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 1003-1026, February.
    15. Richard R. Nelson, 2006. "Reflections on "The Simple Economics of Basic Scientific Research": looking back and looking forward," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 15(6), pages 903-917, December.
    16. Lee, Yong S, 2000. "The Sustainability of University-Industry Research Collaboration: An Empirical Assessment," The Journal of Technology Transfer, Springer, vol. 25(2), pages 111-133, June.
    17. Chengliang Liu & Caicheng Niu & Ji Han, 2019. "Spatial Dynamics of Intercity Technology Transfer Networks in China’s Three Urban Agglomerations: A Patent Transaction Perspective," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malwina Mejer, 2011. "Entrepreneurial Scientists and their Publication Performance. An Insight from Belgium," Working Papers ECARES ECARES 2011-017, ULB -- Universite Libre de Bruxelles.
    2. Perkmann, Markus & Tartari, Valentina & McKelvey, Maureen & Autio, Erkko & Broström, Anders & D’Este, Pablo & Fini, Riccardo & Geuna, Aldo & Grimaldi, Rosa & Hughes, Alan & Krabel, Stefan & Kitson, Mi, 2013. "Academic engagement and commercialisation: A review of the literature on university–industry relations," Research Policy, Elsevier, vol. 42(2), pages 423-442.
    3. Daniel Ogachi & Lydia Bares & Zoltan Zeman, 2021. "Innovation and Scientific Research as a Sustainable Development Goal in Spanish Public Universities," Sustainability, MDPI, vol. 13(7), pages 1-12, April.
    4. Larsen, Maria Theresa, 2011. "The implications of academic enterprise for public science: An overview of the empirical evidence," Research Policy, Elsevier, vol. 40(1), pages 6-19, February.
    5. Landry, Réjean & Saïhi, Malek & Amara, Nabil & Ouimet, Mathieu, 2010. "Evidence on how academics manage their portfolio of knowledge transfer activities," Research Policy, Elsevier, vol. 39(10), pages 1387-1403, December.
    6. Cornelia Lawson, 2013. "Academic patenting: the importance of industry support," The Journal of Technology Transfer, Springer, vol. 38(4), pages 509-535, August.
    7. Van Looy, Bart & Landoni, Paolo & Callaert, Julie & van Pottelsberghe, Bruno & Sapsalis, Eleftherios & Debackere, Koenraad, 2011. "Entrepreneurial effectiveness of European universities: An empirical assessment of antecedents and trade-offs," Research Policy, Elsevier, vol. 40(4), pages 553-564, May.
    8. Cornelia Lawson, 2013. "Academic Inventions Outside the University: Investigating Patent Ownership in the UK," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 385-398, July.
    9. Crespi, Gustavo & D'Este, Pablo & Fontana, Roberto & Geuna, Aldo, 2011. "The impact of academic patenting on university research and its transfer," Research Policy, Elsevier, vol. 40(1), pages 55-68, February.
    10. Buenstorf, Guido, 2009. "Is commercialization good or bad for science? Individual-level evidence from the Max Planck Society," Research Policy, Elsevier, vol. 38(2), pages 281-292, March.
    11. Barham, Bradford L. & Foltz, Jeremy D., 2007. "Patenting, Commercialization, and US Academic Research in the 21st Century: The Resilience of Basic, Federally-Funded Open Science," Staff Paper Series 513, University of Wisconsin, Agricultural and Applied Economics.
    12. Rajeev K. Goel & Devrim Göktepe-Hultén, 2018. "What drives academic patentees to bypass TTOs? Evidence from a large public research organisation," The Journal of Technology Transfer, Springer, vol. 43(1), pages 240-258, February.
    13. Lin, Jun-You, 2017. "Balancing industry collaboration and academic innovation: The contingent role of collaboration-specific attributes," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 216-228.
    14. Callaert, Julie & Landoni, Paolo & Van Looy, Bart & Verganti, Roberto, 2015. "Scientific yield from collaboration with industry: The relevance of researchers’ strategic approaches," Research Policy, Elsevier, vol. 44(4), pages 990-998.
    15. Banal-Estañol, Albert & Jofre-Bonet, Mireia & Lawson, Cornelia, 2015. "The double-edged sword of industry collaboration: Evidence from engineering academics in the UK," Research Policy, Elsevier, vol. 44(6), pages 1160-1175.
    16. Walter, Sascha G. & Schmidt, Arne & Walter, Achim, 2016. "Patenting rationales of academic entrepreneurs in weak and strong organizational regimes," Research Policy, Elsevier, vol. 45(2), pages 533-545.
    17. Wang, Gangbo & Guan, Jiancheng, 2010. "The role of patenting activity for scientific research: A study of academic inventors from China's nanotechnology," Journal of Informetrics, Elsevier, vol. 4(3), pages 338-350.
    18. Nicola Baldini, 2008. "Negative effects of university patenting: Myths and grounded evidence," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(2), pages 289-311, May.
    19. Haeussler, Carolin & Colyvas, Jeannette A., 2011. "Breaking the Ivory Tower: Academic Entrepreneurship in the Life Sciences in UK and Germany," Research Policy, Elsevier, vol. 40(1), pages 41-54, February.
    20. Lee Davis & Maria Larsen & Peter Lotz, 2011. "Scientists’ perspectives concerning the effects of university patenting on the conduct of academic research in the life sciences," The Journal of Technology Transfer, Springer, vol. 36(1), pages 14-37, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0230805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.