IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0223366.html
   My bibliography  Save this article

Time scale of resilience loss: Implications for managing critical transitions in water quality

Author

Listed:
  • Ryan D Batt
  • Tarsha Eason
  • Ahjond Garmestani

Abstract

Regime shifts involving critical transitions are a type of rapid ecological change that are difficult to predict, but may be preceded by decreases in resilience. Time series statistics like lag-1 autocorrelation may be useful for anticipating resilience declines; however, more study is needed to determine whether the dynamics of autocorrelation depend on the resolution of the time series being analyzed, i.e., whether they are time-scale dependent. Here, we examined timeseries simulated from a lake eutrophication model and gathered from field measurements. The field study involved collecting high frequency chlorophyll fluorescence data from an unmanipulated reference lake and a second lake undergoing experimental fertilization to induce a critical transition in the form of an algal bloom. As part of the experiment, the fertilization was halted in response to detected early warnings of the algal bloom identified by increased autocorrelation. We tested these datasets for time-scale dependence in the dynamics of lag-1 autocorrelation and found that in both the simulation and field experiment, the dynamics of autocorrelation were similar across time scales. In the simulated time series, autocorrelation increased exponentially approaching algal bloom development, and in the field experiment, the difference in autocorrelation between the manipulated and reference lakes increased sharply. These results suggest that, as an early warning indicator, autocorrelation may be robust to the time scale of the analysis. Given that a time scale can be shortened by increasing sampling frequency, or lengthened by aggregating data during analysis, these results have important implications for management as they demonstrate the potential for detecting early warning signals over a wide range of monitoring frequencies and without requiring analysts to make situation-specific decisions regarding aggregation. Such an outcome provides promise that data collection procedures, especially by automated sensors, may be used to monitor and manage ecosystem resilience without the need for strict attention to time scale.

Suggested Citation

  • Ryan D Batt & Tarsha Eason & Ahjond Garmestani, 2019. "Time scale of resilience loss: Implications for managing critical transitions in water quality," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-19, October.
  • Handle: RePEc:plo:pone00:0223366
    DOI: 10.1371/journal.pone.0223366
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223366
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0223366&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0223366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vasilis Dakos & Stephen R Carpenter & William A Brock & Aaron M Ellison & Vishwesha Guttal & Anthony R Ives & Sonia Kéfi & Valerie Livina & David A Seekell & Egbert H van Nes & Marten Scheffer, 2012. "Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-20, July.
    2. William A Brock & Stephen R Carpenter, 2012. "Early Warnings of Regime Shift When the Ecosystem Structure Is Unknown," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-10, September.
    3. John M. Drake & Blaine D. Griffen, 2010. "Early warning signals of extinction in deteriorating environments," Nature, Nature, vol. 467(7314), pages 456-459, September.
    4. Sonia Kéfi & Vishwesha Guttal & William A Brock & Stephen R Carpenter & Aaron M Ellison & Valerie N Livina & David A Seekell & Marten Scheffer & Egbert H van Nes & Vasilis Dakos, 2014. "Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    5. Sonia Kéfi & Max Rietkerk & Concepción L. Alados & Yolanda Pueyo & Vasilios P. Papanastasis & Ahmed ElAich & Peter C. de Ruiter, 2007. "Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems," Nature, Nature, vol. 449(7159), pages 213-217, September.
    6. Carl Boettiger & Alan Hastings, 2013. "From patterns to predictions," Nature, Nature, vol. 493(7431), pages 157-158, January.
    7. Annelies J. Veraart & Elisabeth J. Faassen & Vasilis Dakos & Egbert H. van Nes & Miquel Lürling & Marten Scheffer, 2012. "Correction: Corrigendum: Recovery rates reflect distance to a tipping point in a living system," Nature, Nature, vol. 484(7394), pages 404-404, April.
    8. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    9. Annelies J. Veraart & Elisabeth J. Faassen & Vasilis Dakos & Egbert H. van Nes & Miquel Lürling & Marten Scheffer, 2012. "Recovery rates reflect distance to a tipping point in a living system," Nature, Nature, vol. 481(7381), pages 357-359, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    2. William A Brock & Stephen R Carpenter, 2012. "Early Warnings of Regime Shift When the Ecosystem Structure Is Unknown," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-10, September.
    3. Tatiana Baumuratova & Simona Dobre & Thierry Bastogne & Thomas Sauter, 2013. "Switch of Sensitivity Dynamics Revealed with DyGloSA Toolbox for Dynamical Global Sensitivity Analysis as an Early Warning for System's Critical Transition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    4. Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    5. Maarten C Boerlijst & Thomas Oudman & André M de Roos, 2013. "Catastrophic Collapse Can Occur without Early Warning: Examples of Silent Catastrophes in Structured Ecological Models," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-6, April.
    6. Orozco-Fuentes, S. & Griffiths, G. & Holmes, M.J. & Ettelaie, R. & Smith, J. & Baggaley, A.W. & Parker, N.G., 2019. "Early warning signals in plant disease outbreaks," Ecological Modelling, Elsevier, vol. 393(C), pages 12-19.
    7. Navid Moghadam, Nastaran & Nazarimehr, Fahimeh & Jafari, Sajad & Sprott, Julien C., 2020. "Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    8. Vishwesha Guttal & Srinivas Raghavendra & Nikunj Goel & Quentin Hoarau, 2016. "Lack of Critical Slowing Down Suggests that Financial Meltdowns Are Not Critical Transitions, yet Rising Variability Could Signal Systemic Risk," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    9. Manfred Füllsack & Daniel Reisinger & Marie Kapeller & Georg Jäger, 2022. "Early warning signals from the periphery," Journal of Computational Social Science, Springer, vol. 5(1), pages 665-685, May.
    10. Mathilde Maîtrot & Geof Wood & Joe Devine, 2021. "Understanding resilience: Lessons from lived experiences of extreme poverty in Bangladesh," Development Policy Review, Overseas Development Institute, vol. 39(6), pages 894-910, November.
    11. Xing, Kai & Yang, Xiaoguang, 2020. "Predicting default rates by capturing critical transitions in the macroeconomic system," Finance Research Letters, Elsevier, vol. 32(C).
    12. Yang, Anji & Wang, Hao & Yuan, Sanling, 2023. "Tipping time in a stochastic Leslie predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    13. James Tan & Siew Ann Cheong, 2016. "The Regime Shift Associated with the 2004–2008 US Housing Market Bubble," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-8, September.
    14. Tobias Brett & Marco Ajelli & Quan-Hui Liu & Mary G Krauland & John J Grefenstette & Willem G van Panhuis & Alessandro Vespignani & John M Drake & Pejman Rohani, 2020. "Detecting critical slowing down in high-dimensional epidemiological systems," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-19, March.
    15. Tobias S Brett & Eamon B O’Dea & Éric Marty & Paige B Miller & Andrew W Park & John M Drake & Pejman Rohani, 2018. "Anticipating epidemic transitions with imperfect data," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-18, June.
    16. Mohammed, M.M.A. & Landi, P. & Minoarivelo, H.O. & Hui, C., 2018. "Frugivory and seed dispersal: Extended bi-stable persistence and reduced clustering of plants," Ecological Modelling, Elsevier, vol. 380(C), pages 31-39.
    17. Lu, Jinfeng & Dimov, Dimo, 2023. "A system dynamics modelling of entrepreneurship and growth within firms," Journal of Business Venturing, Elsevier, vol. 38(3).
    18. Karimi Rahjerdi, Bahareh & Ramamoorthy, Ramesh & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Jafari, Sajad, 2022. "Indicating the synchronization bifurcation points using the early warning signals in two case studies: Continuous and explosive synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    19. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    20. Martin Lindegren & Vasilis Dakos & Joachim P Gröger & Anna Gårdmark & Georgs Kornilovs & Saskia A Otto & Christian Möllmann, 2012. "Early Detection of Ecosystem Regime Shifts: A Multiple Method Evaluation for Management Application," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0223366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.