IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0180734.html
   My bibliography  Save this article

Robustness of speech intelligibility at moderate levels of spectral degradation

Author

Listed:
  • Sierra Broussard
  • Gregory Hickok
  • Kourosh Saberi

Abstract

The current study investigated how amplitude and phase information differentially contribute to speech intelligibility. Listeners performed a word-identification task after hearing spectrally degraded sentences. Each stimulus was degraded by first dividing it into segments, then the amplitude and phase components of each segment were decorrelated independently to various degrees relative to those of the original segment. Segments were then concatenated into their original sequence to present to the listener. We used three segment lengths: 30 ms (phoneme length), 250 ms (syllable length), and full sentence (non-segmented). We found that for intermediate spectral correlation values, segment length is generally inconsequential to intelligibility. Overall, intelligibility was more adversely affected by phase-spectrum decorrelation than by amplitude-spectrum decorrelation. If the phase information was left intact, decorrelating the amplitude spectrum to intermediate values had no effect on intelligibility. If the amplitude information was left intact, decorrelating the phase spectrum to intermediate values significantly degraded intelligibility. Some exceptions to this rule are described. These results delineate the range of amplitude- and phase-spectrum correlations necessary for speech processing and its dependency on the temporal window of analysis (phoneme or syllable length). Results further point to the robustness of speech information in environments that acoustically degrade cues to intelligibility (e.g., reverberant or noisy environments).

Suggested Citation

  • Sierra Broussard & Gregory Hickok & Kourosh Saberi, 2017. "Robustness of speech intelligibility at moderate levels of spectral degradation," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-14, July.
  • Handle: RePEc:plo:pone00:0180734
    DOI: 10.1371/journal.pone.0180734
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180734
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0180734&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0180734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Berens, Philipp, 2009. "CircStat: A MATLAB Toolbox for Circular Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i10).
    2. Zachary M. Smith & Bertrand Delgutte & Andrew J. Oxenham, 2002. "Chimaeric sounds reveal dichotomies in auditory perception," Nature, Nature, vol. 416(6876), pages 87-90, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jennifer B Tennessen & Marla M Holt & Brianna M Wright & M Bradley Hanson & Candice K Emmons & Deborah A Giles & Jeffrey T Hogan & Sheila J Thornton & Volker B Deecke, 2023. "Divergent foraging strategies between populations of sympatric matrilineal killer whales," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(3), pages 373-386.
    2. Thomas Schreiner & Marit Petzka & Tobias Staudigl & Bernhard P. Staresina, 2023. "Respiration modulates sleep oscillations and memory reactivation in humans," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Thomas Schreiner & Elisabeth Kaufmann & Soheyl Noachtar & Jan-Hinnerk Mehrkens & Tobias Staudigl, 2022. "The human thalamus orchestrates neocortical oscillations during NREM sleep," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    5. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    6. Alexis T Baria & Brian Maniscalco & Biyu J He, 2017. "Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-29, November.
    7. Matthijs J. Warrens & Bunga C. Pratiwi, 2016. "Kappa Coefficients for Circular Classifications," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 507-522, October.
    8. Lombard, F. & Hawkins, Douglas M. & Potgieter, Cornelis J., 2017. "Sequential rank CUSUM charts for angular data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 268-279.
    9. Masataka Sawayama & Shin'ya Nishida, 2018. "Material and shape perception based on two types of intensity gradient information," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-40, April.
    10. Aguiar-Conraria, Luis & Martins, Manuel M.F. & Soares, Maria Joana, 2018. "Estimating the Taylor rule in the time-frequency domain," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 122-137.
    11. Assaf Breska & Leon Y Deouell, 2017. "Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment," PLOS Biology, Public Library of Science, vol. 15(2), pages 1-30, February.
    12. Sunny Nigam & Russell Milton & Sorin Pojoga & Valentin Dragoi, 2023. "Adaptive coding across visual features during free-viewing and fixation conditions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Chinnakkaruppan Adaikkan & Justin Joseph & Georgios Foustoukos & Jun Wang & Denis Polygalov & Roman Boehringer & Steven J. Middleton & Arthur J. Y. Huang & Li-Huei Tsai & Thomas J. McHugh, 2024. "Silencing CA1 pyramidal cells output reveals the role of feedback inhibition in hippocampal oscillations," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Daniel S. Kluger & Carina Forster & Omid Abbasi & Nikos Chalas & Arno Villringer & Joachim Gross, 2023. "Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Manuela Costa & Diego Lozano-Soldevilla & Antonio Gil-Nagel & Rafael Toledano & Carina R. Oehrn & Lukas Kunz & Mar Yebra & Costantino Mendez-Bertolo & Lennart Stieglitz & Johannes Sarnthein & Nikolai , 2022. "Aversive memory formation in humans involves an amygdala-hippocampus phase code," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Toshinori Namba & Shuji Ishihara, 2020. "Cytoskeleton polarity is essential in determining orientational order in basal bodies of multi-ciliated cells," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-18, February.
    17. Vincent Douchamps & Matteo Volo & Alessandro Torcini & Demian Battaglia & Romain Goutagny, 2024. "Gamma oscillatory complexity conveys behavioral information in hippocampal networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    18. Adeeti Aggarwal & Connor Brennan & Jennifer Luo & Helen Chung & Diego Contreras & Max B. Kelz & Alex Proekt, 2022. "Visual evoked feedforward–feedback traveling waves organize neural activity across the cortical hierarchy in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Marczak, Martyna & Gómez, Víctor, 2012. "SPECTRAN, a set of Matlab programs for Spectral analysis," FZID Discussion Papers 60-2012, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    20. Federico Rocchi & Carola Canella & Shahryar Noei & Daniel Gutierrez-Barragan & Ludovico Coletta & Alberto Galbusera & Alexia Stuefer & Stefano Vassanelli & Massimo Pasqualetti & Giuliano Iurilli & Ste, 2022. "Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0180734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.