IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v33y2016i3d10.1007_s00357-016-9217-3.html
   My bibliography  Save this article

Kappa Coefficients for Circular Classifications

Author

Listed:
  • Matthijs J. Warrens

    (University of Groningen)

  • Bunga C. Pratiwi

    (Leiden University)

Abstract

Circular classifications are classification scales with categories that exhibit a certain periodicity. Since linear scales have endpoints, the standard weighted kappas used for linear scales are not appropriate for analyzing agreement between two circular classifications. A family of kappa coefficients for circular classifications is defined. The kappas differ only in one parameter. It is studied how the circular kappas are related and if the values of the circular kappas depend on the number of categories. It turns out that the values of the circular kappas can be strictly ordered in precisely two ways. The orderings suggest that the circular kappas are measuring the same thing, but to a different extent. If one accepts the use of magnitude guidelines, it is recommended to use stricter criteria for circular kappas that tend to produce higher values.

Suggested Citation

  • Matthijs J. Warrens & Bunga C. Pratiwi, 2016. "Kappa Coefficients for Circular Classifications," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 507-522, October.
  • Handle: RePEc:spr:jclass:v:33:y:2016:i:3:d:10.1007_s00357-016-9217-3
    DOI: 10.1007/s00357-016-9217-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-016-9217-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-016-9217-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Zhao & Zhou, Ming, 2015. "Weighted kappa statistic for clustered matched-pair ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 1-18.
    2. Rueda, Cristina & Fernández, Miguel A. & Peddada, Shyamal Das, 2009. "Estimation of Parameters Subject to Order Restrictions on a Circle With Application to Estimation of Phase Angles of Cell Cycle Genes," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 338-347.
    3. Matthijs Warrens, 2008. "On the Equivalence of Cohen’s Kappa and the Hubert-Arabie Adjusted Rand Index," Journal of Classification, Springer;The Classification Society, vol. 25(2), pages 177-183, November.
    4. Matthijs Warrens, 2012. "Some Paradoxical Results for the Quadratically Weighted Kappa," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 315-323, April.
    5. Matthijs Warrens, 2014. "Corrected Zegers-ten Berge Coefficients Are Special Cases of Cohen’s Weighted Kappa," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 179-193, July.
    6. Berens, Philipp, 2009. "CircStat: A MATLAB Toolbox for Circular Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i10).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandipta Debanshi & Swades Pal, 2020. "Assessing gully erosion susceptibility in Mayurakshi river basin of eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 883-914, February.
    2. Hossein Baloochian & Hamid Reza Ghaffary, 2019. "Multiclass Classification Based on Multi-criteria Decision-making," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 140-151, April.
    3. Matthijs J. Warrens, 2021. "Kappa coefficients for dichotomous-nominal classifications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 193-208, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthijs J. Warrens, 2021. "Kappa coefficients for dichotomous-nominal classifications," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 193-208, March.
    2. Matthijs J. Warrens, 2014. "New Interpretations of Cohen’s Kappa," Journal of Mathematics, Hindawi, vol. 2014, pages 1-9, September.
    3. Tarald O. Kvålseth, 2018. "An Alternative Interpretation of the Linearly Weighted Kappa Coefficients for Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 618-627, September.
    4. Alexandra Raadt & Matthijs J. Warrens & Roel J. Bosker & Henk A. L. Kiers, 2021. "A Comparison of Reliability Coefficients for Ordinal Rating Scales," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 519-543, October.
    5. Stefano Tonellato & Andrea Pastore, 2013. "On the comparison of model-based clustering solutions," Working Papers 2013:05, Department of Economics, University of Venice "Ca' Foscari".
    6. Thomas Schreiner & Marit Petzka & Tobias Staudigl & Bernhard P. Staresina, 2023. "Respiration modulates sleep oscillations and memory reactivation in humans," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Thomas Schreiner & Elisabeth Kaufmann & Soheyl Noachtar & Jan-Hinnerk Mehrkens & Tobias Staudigl, 2022. "The human thalamus orchestrates neocortical oscillations during NREM sleep," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    9. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    10. Lombard, F. & Hawkins, Douglas M. & Potgieter, Cornelis J., 2017. "Sequential rank CUSUM charts for angular data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 268-279.
    11. Masataka Sawayama & Shin'ya Nishida, 2018. "Material and shape perception based on two types of intensity gradient information," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-40, April.
    12. Yang, Zhao & Zhou, Ming, 2015. "Kappa statistic for clustered physician–patients polytomous data," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 1-17.
    13. Aguiar-Conraria, Luis & Martins, Manuel M.F. & Soares, Maria Joana, 2018. "Estimating the Taylor rule in the time-frequency domain," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 122-137.
    14. Daniel S. Kluger & Carina Forster & Omid Abbasi & Nikos Chalas & Arno Villringer & Joachim Gross, 2023. "Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Manuela Costa & Diego Lozano-Soldevilla & Antonio Gil-Nagel & Rafael Toledano & Carina R. Oehrn & Lukas Kunz & Mar Yebra & Costantino Mendez-Bertolo & Lennart Stieglitz & Johannes Sarnthein & Nikolai , 2022. "Aversive memory formation in humans involves an amygdala-hippocampus phase code," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Toshinori Namba & Shuji Ishihara, 2020. "Cytoskeleton polarity is essential in determining orientational order in basal bodies of multi-ciliated cells," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-18, February.
    17. Vincent Douchamps & Matteo Volo & Alessandro Torcini & Demian Battaglia & Romain Goutagny, 2024. "Gamma oscillatory complexity conveys behavioral information in hippocampal networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    18. Warrens, Matthijs J., 2013. "The Cicchetti–Allison weighting matrix is positive definite," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 180-182.
    19. Marczak, Martyna & Gómez, Víctor, 2012. "SPECTRAN, a set of Matlab programs for Spectral analysis," FZID Discussion Papers 60-2012, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    20. Federico Rocchi & Carola Canella & Shahryar Noei & Daniel Gutierrez-Barragan & Ludovico Coletta & Alberto Galbusera & Alexia Stuefer & Stefano Vassanelli & Massimo Pasqualetti & Giuliano Iurilli & Ste, 2022. "Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:33:y:2016:i:3:d:10.1007_s00357-016-9217-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.