IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0148190.html
   My bibliography  Save this article

Cost-Effectiveness of a National Initiative to Improve Hand Hygiene Compliance Using the Outcome of Healthcare Associated Staphylococcus aureus Bacteraemia

Author

Listed:
  • Nicholas Graves
  • Katie Page
  • Elizabeth Martin
  • David Brain
  • Lisa Hall
  • Megan Campbell
  • Naomi Fulop
  • Nerina Jimmeison
  • Katherine White
  • David Paterson
  • Adrian G Barnett

Abstract

Background: The objective is to estimate the incremental cost-effectiveness of the Australian National Hand Hygiene Inititiave implemented between 2009 and 2012 using healthcare associated Staphylococcus aureus bacteraemia as the outcome. Baseline comparators are the eight existing state and territory hand hygiene programmes. The setting is the Australian public healthcare system and 1,294,656 admissions from the 50 largest Australian hospitals are included. Methods: The design is a cost-effectiveness modelling study using a before and after quasi-experimental design. The primary outcome is cost per life year saved from reduced cases of healthcare associated Staphylococcus aureus bacteraemia, with cost estimated by the annual on-going maintenance costs less the costs saved from fewer infections. Data were harvested from existing sources or were collected prospectively and the time horizon for the model was 12 months, 2011–2012. Findings: No useable pre-implementation Staphylococcus aureus bacteraemia data were made available from the 11 study hospitals in Victoria or the single hospital in Northern Territory leaving 38 hospitals among six states and territories available for cost-effectiveness analyses. Total annual costs increased by $2,851,475 for a return of 96 years of life giving an incremental cost-effectiveness ratio (ICER) of $29,700 per life year gained. Probabilistic sensitivity analysis revealed a 100% chance the initiative was cost effective in the Australian Capital Territory and Queensland, with ICERs of $1,030 and $8,988 respectively. There was an 81% chance it was cost effective in New South Wales with an ICER of $33,353, a 26% chance for South Australia with an ICER of $64,729 and a 1% chance for Tasmania and Western Australia. The 12 hospitals in Victoria and the Northern Territory incur annual on-going maintenance costs of $1.51M; no information was available to describe cost savings or health benefits. Conclusions: The Australian National Hand Hygiene Initiative was cost-effective against an Australian threshold of $42,000 per life year gained. The return on investment varied among the states and territories of Australia.

Suggested Citation

  • Nicholas Graves & Katie Page & Elizabeth Martin & David Brain & Lisa Hall & Megan Campbell & Naomi Fulop & Nerina Jimmeison & Katherine White & David Paterson & Adrian G Barnett, 2016. "Cost-Effectiveness of a National Initiative to Improve Hand Hygiene Compliance Using the Outcome of Healthcare Associated Staphylococcus aureus Bacteraemia," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-17, February.
  • Handle: RePEc:plo:pone00:0148190
    DOI: 10.1371/journal.pone.0148190
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0148190
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0148190&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0148190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claxton, Karl, 1999. "The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies," Journal of Health Economics, Elsevier, vol. 18(3), pages 341-364, June.
    2. Karl Claxton & Mark Sculpher & Chris McCabe & Andrew Briggs & Ron Akehurst & Martin Buxton & John Brazier & Tony O'Hagan, 2005. "Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra," Health Economics, John Wiley & Sons, Ltd., vol. 14(4), pages 339-347, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    2. McKenna, Claire & Chalabi, Zaid & Epstein, David & Claxton, Karl, 2010. "Budgetary policies and available actions: A generalisation of decision rules for allocation and research decisions," Journal of Health Economics, Elsevier, vol. 29(1), pages 170-181, January.
    3. Anna Heath & Petros Pechlivanoglou, 2022. "Prioritizing Research in an Era of Personalized Medicine: The Potential Value of Unexplained Heterogeneity," Medical Decision Making, , vol. 42(5), pages 649-660, July.
    4. Laura Bojke & Karl Claxton & Stephen Palmer & Mark Sculpher, 2006. "Defining and characterising structural uncertainty in decision analytic models," Working Papers 009cherp, Centre for Health Economics, University of York.
    5. Mohan V. Bala & Gary A. Zarkin & Josephine Mauskopf, 2008. "Presenting results of probabilistic sensitivity analysis: the incremental benefit curve," Health Economics, John Wiley & Sons, Ltd., vol. 17(3), pages 435-440, March.
    6. Karl Claxton & Stephen Palmer & Louise Longworth & Laura Bojke & Susan Griffin & Claire McKenna & Marta Soares & Eldon Spackman & Jihee Youn, 2011. "Uncertainty, evidence and irrecoverable costs: Informing approval, pricing and research decisions for health technologies," Working Papers 069cherp, Centre for Health Economics, University of York.
    7. John W. Stevens, 2018. "Using Evidence from Randomised Controlled Trials in Economic Models: What Information is Relevant and is There a Minimum Amount of Sample Data Required to Make Decisions?," PharmacoEconomics, Springer, vol. 36(10), pages 1135-1141, October.
    8. N. J. Welton & A. E. Ades & D. M. Caldwell & T. J. Peters, 2008. "Research prioritization based on expected value of partial perfect information: a case‐study on interventions to increase uptake of breast cancer screening," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(4), pages 807-841, October.
    9. Marta O Soares & L Canto e Castro, 2010. "Simulation or cohort models? Continuous time simulation and discretized Markov models to estimate cost-effectiveness," Working Papers 056cherp, Centre for Health Economics, University of York.
    10. Anthony O'Hagan & Matt Stevenson & Jason Madan, 2007. "Monte Carlo probabilistic sensitivity analysis for patient level simulation models: efficient estimation of mean and variance using ANOVA," Health Economics, John Wiley & Sons, Ltd., vol. 16(10), pages 1009-1023.
    11. Steven Edwards & Sarah Wordsworth & Mike Clarke, 2012. "Treating pneumonia in critical care in the United Kingdom following failure of initial antibiotic: a cost-utility analysis comparing meropenem with piperacillin/tazobactam," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 13(2), pages 181-192, April.
    12. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    13. Eldon Spackman & Stewart Richmond & Mark Sculpher & Martin Bland & Stephen Brealey & Rhian Gabe & Ann Hopton & Ada Keding & Harriet Lansdown & Sara Perren & David Torgerson & Ian Watt & Hugh MacPherso, 2014. "Cost-Effectiveness Analysis of Acupuncture, Counselling and Usual Care in Treating Patients with Depression: The Results of the ACUDep Trial," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-12, November.
    14. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    15. Thomas Reinhold & Claudia Witt & Susanne Jena & Benno Brinkhaus & Stefan Willich, 2008. "Quality of life and cost-effectiveness of acupuncture treatment in patients with osteoarthritis pain," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 9(3), pages 209-219, August.
    16. Dongzhe Hong & Lei Si & Minghuan Jiang & Hui Shao & Wai-kit Ming & Yingnan Zhao & Yan Li & Lizheng Shi, 2019. "Cost Effectiveness of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors, Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists, and Dipeptidyl Peptidase-4 (DPP-4) Inhibitors: A Systematic Review," PharmacoEconomics, Springer, vol. 37(6), pages 777-818, June.
    17. Pedram Sendi & Huldrych F Günthard & Mathew Simcock & Bruno Ledergerber & Jörg Schüpbach & Manuel Battegay & for the Swiss HIV Cohort Study, 2007. "Cost-Effectiveness of Genotypic Antiretroviral Resistance Testing in HIV-Infected Patients with Treatment Failure," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-8, January.
    18. Maiwenn Al, 2013. "Cost-Effectiveness Acceptability Curves Revisited," PharmacoEconomics, Springer, vol. 31(2), pages 93-100, February.
    19. Frank G. Sandmann & Julie V. Robotham & Sarah R. Deeny & W. John Edmunds & Mark Jit, 2018. "Estimating the opportunity costs of bed‐days," Health Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 592-605, March.
    20. Katharina Fischer & Reiner Leidl, 2014. "Analysing coverage decision-making: opening Pandora’s box?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 15(9), pages 899-906, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0148190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.