IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0038091.html
   My bibliography  Save this article

Mate-Finding as an Overlooked Critical Determinant of Dispersal Variation in Sexually-Reproducing Animals

Author

Listed:
  • James J Gilroy
  • Julie L Lockwood

Abstract

Dispersal is a critically important process in ecology, but robust predictive models of animal dispersal remain elusive. We identify a potentially ubiquitous component of variation in animal dispersal that has been largely overlooked until now: the influence of mate encounters on settlement probability. We use an individual-based model to simulate dispersal in sexually-reproducing organisms that follow a simple set of movement rules based on conspecific encounters, within an environment lacking spatial habitat heterogeneity. We show that dispersal distances vary dramatically with fluctuations in population density in such a model, even in the absence of variation in dispersive traits between individuals. In a simple random-walk model with promiscuous mating, dispersal distributions become increasingly ‘fat-tailed’ at low population densities due to the increasing scarcity of mates. Similar variation arises in models incorporating territoriality. In a model with polygynous mating, we show that patterns of sex-biased dispersal can even be reversed across a gradient of population density, despite underlying dispersal mechanisms remaining unchanged. We show that some widespread dispersal patterns found in nature (e.g. fat tailed distributions) can arise as a result of demographic variability in the absence of heterogeneity in dispersive traits across the population. This implies that models in which individual dispersal distances are considered to be fixed traits might be unrealistic, as dispersal distances vary widely under a single dispersal mechanism when settlement is influenced by mate encounters. Mechanistic models offer a promising means of advancing our understanding of dispersal in sexually-reproducing organisms.

Suggested Citation

  • James J Gilroy & Julie L Lockwood, 2012. "Mate-Finding as an Overlooked Critical Determinant of Dispersal Variation in Sexually-Reproducing Animals," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-8, May.
  • Handle: RePEc:plo:pone00:0038091
    DOI: 10.1371/journal.pone.0038091
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038091
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0038091&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0038091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ilkka Hanski & Otso Ovaskainen, 2000. "The metapopulation capacity of a fragmented landscape," Nature, Nature, vol. 404(6779), pages 755-758, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laguna, M.F. & Abramson, G. & Kuperman, M.N. & Lanata, J.L. & Monjeau, J.A., 2015. "Mathematical model of livestock and wildlife: Predation and competition under environmental disturbances," Ecological Modelling, Elsevier, vol. 309, pages 110-117.
    2. Joyce Maschinski & Michael Ross & Hong Liu & Joe O’Brien & Eric Wettberg & Kristin Haskins, 2011. "Sinking ships: conservation options for endemic taxa threatened by sea level rise," Climatic Change, Springer, vol. 107(1), pages 147-167, July.
    3. Vuilleumier, Séverine & Fontanillas, Pierre, 2007. "Landscape structure affects dispersal in the greater white-toothed shrew: Inference between genetic and simulated ecological distances," Ecological Modelling, Elsevier, vol. 201(3), pages 369-376.
    4. Drielsma, Michael & Love, Jamie, 2021. "An equitable method for evaluating habitat amount and potential occupancy," Ecological Modelling, Elsevier, vol. 440(C).
    5. Cornell, Stephen J. & Ovaskainen, Otso, 2008. "Exact asymptotic analysis for metapopulation dynamics on correlated dynamic landscapes," Theoretical Population Biology, Elsevier, vol. 74(3), pages 209-225.
    6. Christensen, Claire & Albert, István & Grenfell, Bryan & Albert, Réka, 2010. "Disease dynamics in a dynamic social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2663-2674.
    7. Eriksson, A. & Elías-Wolff, F. & Mehlig, B., 2013. "Metapopulation dynamics on the brink of extinction," Theoretical Population Biology, Elsevier, vol. 83(C), pages 101-122.
    8. d’Acampora, Bárbara H.A. & Higueras, Ester & Román, Emilia, 2018. "Combining different metrics to measure the ecological connectivity of two mangrove landscapes in the Municipality of Florianópolis, Southern Brazil," Ecological Modelling, Elsevier, vol. 384(C), pages 103-110.
    9. Bodin, Örjan & Saura, Santiago, 2010. "Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments," Ecological Modelling, Elsevier, vol. 221(19), pages 2393-2405.
    10. Zhouqiao Ren & Jianhua He & Qiaobing Yue, 2021. "Assessing the Impact of Urban Expansion on Surrounding Forested Landscape Connectivity across Space and Time," Land, MDPI, vol. 10(4), pages 1-14, April.
    11. Bauer, Dana Marie & Swallow, Stephen K. & Paton, Peter W.C., 2010. "Cost-effective species conservation in exurban communities: A spatial analysis," Resource and Energy Economics, Elsevier, vol. 32(2), pages 180-202, April.
    12. Peck, Steven L., 2012. "Networks of habitat patches in tsetse fly control: Implications of metapopulation structure on assessing local extinction probabilities," Ecological Modelling, Elsevier, vol. 246(C), pages 99-102.
    13. Vuilleumier, Séverine & Possingham, Hugh P., 2012. "Interacting populations in heterogeneous environments," Ecological Modelling, Elsevier, vol. 228(C), pages 96-105.
    14. Gaaff, Aris & Reinhard, Stijn, 2012. "Incorporating the value of ecological networks into cost–benefit analysis to improve spatially explicit land-use planning," Ecological Economics, Elsevier, vol. 73(C), pages 66-74.
    15. Munoz, François & Cheptou, Pierre-Olivier & Kjellberg, Finn, 2007. "Spectral analysis of simulated species distribution maps provides insights into metapopulation dynamics," Ecological Modelling, Elsevier, vol. 205(3), pages 314-322.
    16. Hashem Althagafi & Sergei Petrovskii, 2021. "Metapopulation Persistence and Extinction in a Fragmented Random Habitat: A Simulation Study," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    17. Bauer, Dana Marie & Swallow, Stephen K., 2013. "Conserving metapopulations in human-altered landscapes at the urban–rural fringe," Ecological Economics, Elsevier, vol. 95(C), pages 159-170.
    18. J Nevil Amos & Andrew F Bennett & Ralph Mac Nally & Graeme Newell & Alexandra Pavlova & James Q Radford & James R Thomson & Matt White & Paul Sunnucks, 2012. "Predicting Landscape-Genetic Consequences of Habitat Loss, Fragmentation and Mobility for Multiple Species of Woodland Birds," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-12, February.
    19. M. Heino & I. Hanski, 2000. "Evolution of Migration Rate in a Spatially Realistic Metapopulation Model," Working Papers ir00044, International Institute for Applied Systems Analysis.
    20. Ventura, Paulo C. & Tokuda, Eric K. & da F. Costa, Luciano & Rodrigues, Francisco A., 2023. "A Markov chain for metapopulations of small sizes with attraction landscape," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0038091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.