IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007212.html
   My bibliography  Save this article

Close spatial arrangement of mutants favors and disfavors fixation

Author

Listed:
  • Yunming Xiao
  • Bin Wu

Abstract

Cooperation is ubiquitous across all levels of biological systems ranging from microbial communities to human societies. It, however, seemingly contradicts the evolutionary theory, since cooperators are exploited by free-riders and thus are disfavored by natural selection. Many studies based on evolutionary game theory have tried to solve the puzzle and figure out the reason why cooperation exists and how it emerges. Network reciprocity is one of the mechanisms to promote cooperation, where nodes refer to individuals and links refer to social relationships. The spatial arrangement of mutant individuals, which refers to the clustering of mutants, plays a key role in network reciprocity. Besides, many other mechanisms supporting cooperation suggest that the clustering of mutants plays an important role in the expansion of mutants. However, the clustering of mutants and the game dynamics are typically coupled. It is still unclear how the clustering of mutants alone alters the evolutionary dynamics. To this end, we employ a minimal model with frequency independent fitness on a circle. It disentangles the clustering of mutants from game dynamics. The distance between two mutants on the circle is adopted as a natural indicator for the clustering of mutants or assortment. We find that the assortment is an amplifier of the selection for the connected mutants compared with the separated ones. Nevertheless, as mutants are separated, the more dispersed mutants are, the greater the chance of invasion is. It gives rise to the non-monotonic effect of clustering, which is counterintuitive. On the other hand, we find that less assortative mutants speed up fixation. Our model shows that the clustering of mutants plays a non-trivial role in fixation, which has emerged even if the game interaction is absent.Author summary: Evolutionary dynamics on networks are key for biological and social evolution. Typically, the clustering mutants on networks can dramatically alter the direction of selection. Previous studies on the assortment of mutants assume that individuals interact in a frequency-dependent way. It is hard to tell how assortment alone alters the evolutionary fate. We establish a minimal network model to disentangle the assortment from the game interaction. We find that for weak selection limit, the assortment of mutants plays little role in fixation probability. For strong selection limit, connected mutants, i.e., the maximum assortment, are best for fixation. When the mutants are separated by only one wild-type individual, it is worse off than that separated by more than one wild-type individual in fixation probability. Our results show the nontrivial yet fundamental effect of the clustering on fixation. Noteworthily, it has already arisen, even if the game interaction is absent.

Suggested Citation

  • Yunming Xiao & Bin Wu, 2019. "Close spatial arrangement of mutants favors and disfavors fixation," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-20, September.
  • Handle: RePEc:plo:pcbi00:1007212
    DOI: 10.1371/journal.pcbi.1007212
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007212
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007212&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandros Rigos & Heinrich H. Nax, 2015. "Assortativity evolving from social dilemmas," Discussion Papers in Economics 15/19, Division of Economics, School of Business, University of Leicester.
    2. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    3. Erez Lieberman & Christoph Hauert & Martin A. Nowak, 2005. "Evolutionary dynamics on graphs," Nature, Nature, vol. 433(7023), pages 312-316, January.
    4. Theodore C. Bergstrom, 2003. "The Algebra of Assortative Encounters and the Evolution of Cooperation," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 211-228.
    5. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    6. Jorge Peña & Bin Wu & Jordi Arranz & Arne Traulsen, 2016. "Evolutionary Games of Multiplayer Cooperation on Graphs," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    7. Rick L. Riolo & Michael D. Cohen & Robert Axelrod, 2001. "Evolution of cooperation without reciprocity," Nature, Nature, vol. 414(6862), pages 441-443, November.
    8. Bin Wu & Lei Zhou, 2018. "Individualised aspiration dynamics: Calculation by proofs," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-15, September.
    9. Te Wu & Long Wang & Feng Fu, 2017. "Coevolutionary dynamics of phenotypic diversity and contingent cooperation," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-16, January.
    10. Laura Hindersin & Arne Traulsen, 2015. "Most Undirected Random Graphs Are Amplifiers of Selection for Birth-Death Dynamics, but Suppressors of Selection for Death-Birth Dynamics," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Lixuan & Wu, Bin, 2021. "Eco-evolutionary dynamics with payoff-dependent environmental feedback," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Hendrik Richter, 2020. "Evolution of Cooperation for Multiple Mutant Configurations on All Regular Graphs with N ≤ 14 Players," Games, MDPI, vol. 11(1), pages 1-18, February.
    3. Zhang, Libin & Yao, Zijun & Wu, Bin, 2021. "Calculating biodiversity under stochastic evolutionary dynamics," Applied Mathematics and Computation, Elsevier, vol. 411(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    2. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    3. Charles G Nathanson & Corina E Tarnita & Martin A Nowak, 2009. "Calculating Evolutionary Dynamics in Structured Populations," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-7, December.
    4. Josef Tkadlec & Andreas Pavlogiannis & Krishnendu Chatterjee & Martin A Nowak, 2020. "Limits on amplifiers of natural selection under death-Birth updating," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-13, January.
    5. Swami Iyer & Timothy Killingback, 2020. "Evolution of Cooperation in Social Dilemmas with Assortative Interactions," Games, MDPI, vol. 11(4), pages 1-31, September.
    6. Li, Ya & Chen, Shanxiong & Niu, Ben, 2018. "Reward depending on public funds stimulates cooperation in spatial prisoner’s dilemma games," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 38-45.
    7. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    8. Qiguang An & Hongfeng Guo & Yating Zheng, 2022. "On Robust Stability and Stabilization of Networked Evolutionary Games with Time Delays," Mathematics, MDPI, vol. 10(15), pages 1-12, July.
    9. Liu, Xuesong & Pan, Qiuhui & He, Mingfeng & Liu, Aizhi, 2019. "Promotion of cooperation in evolutionary game dynamics under asymmetric information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 258-266.
    10. Hendrik Richter, 2020. "Evolution of Cooperation for Multiple Mutant Configurations on All Regular Graphs with N ≤ 14 Players," Games, MDPI, vol. 11(1), pages 1-18, February.
    11. Jorge Peña & Bin Wu & Jordi Arranz & Arne Traulsen, 2016. "Evolutionary Games of Multiplayer Cooperation on Graphs," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    12. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    13. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    14. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Critical thresholds of benefit distribution in an extended snowdrift game model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    15. Su, Zhen & Li, Lixiang & Xiao, Jinghua & Podobnik, B. & Stanley, H. Eugene, 2018. "Promotion of cooperation induced by two-sided players in prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 584-590.
    16. Nesrine Ben Khalifa & Rachid El-Azouzi & Yezekael Hayel & Issam Mabrouki, 2017. "Evolutionary Games in Interacting Communities," Dynamic Games and Applications, Springer, vol. 7(2), pages 131-156, June.
    17. Flávio L Pinheiro & Jorge M Pacheco & Francisco C Santos, 2012. "From Local to Global Dilemmas in Social Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    18. Kroumi, Dhaker & Lessard, Sabin, 2015. "Evolution of cooperation in a multidimensional phenotype space," Theoretical Population Biology, Elsevier, vol. 102(C), pages 60-75.
    19. Matthijs van Veelen & Benjamin Allen & Moshe Hoffman & Burton Simon & Carl Veller, 2016. "Inclusive Fitness," Tinbergen Institute Discussion Papers 16-055/I, Tinbergen Institute.
    20. Cheng, Jiangjiang & Mei, Wenjun & Su, Wei & Chen, Ge, 2023. "Evolutionary games on networks: Phase transition, quasi-equilibrium, and mathematical principles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.