IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/3001389.html
   My bibliography  Save this article

Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use

Author

Listed:
  • Andrew J Tanentzap
  • Samuel Cottingham
  • Jérémy Fonvielle
  • Isobel Riley
  • Lucy M Walker
  • Samuel G Woodman
  • Danai Kontou
  • Christian M Pichler
  • Erwin Reisner
  • Laurent Lebreton

Abstract

Pollution from microplastics and anthropogenic fibres threatens lakes, but we know little about what factors predict its accumulation. Lakes may be especially contaminated because of long water retention times and proximity to pollution sources. Here, we surveyed anthropogenic microparticles, i.e., microplastics and anthropogenic fibres, in surface waters of 67 European lakes spanning 30° of latitude and large environmental gradients. By collating data from >2,100 published net tows, we found that microparticle concentrations in our field survey were higher than previously reported in lakes and comparable to rivers and oceans. We then related microparticle concentrations in our field survey to surrounding land use, water chemistry, and plastic emissions to sites estimated from local hydrology, population density, and waste production. Microparticle concentrations in European lakes quadrupled as both estimated mismanaged waste inputs and wastewater treatment loads increased in catchments. Concentrations decreased by 2 and 5 times over the range of surrounding forest cover and potential in-lake biodegradation, respectively. As anthropogenic debris continues to pollute the environment, our data will help contextualise future work, and our models can inform control and remediation efforts.Pollution from microplastics and anthropogenic fibres threatens lakes, but we know little about what factors predict its accumulation. This study uses a survey of 67 European lakes spanning 30° of latitude to show that economic and environmental indicators predict the pollution of lakes by anthropogenic microparticles.

Suggested Citation

  • Andrew J Tanentzap & Samuel Cottingham & Jérémy Fonvielle & Isobel Riley & Lucy M Walker & Samuel G Woodman & Danai Kontou & Christian M Pichler & Erwin Reisner & Laurent Lebreton, 2021. "Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use," PLOS Biology, Public Library of Science, vol. 19(9), pages 1-18, September.
  • Handle: RePEc:plo:pbio00:3001389
    DOI: 10.1371/journal.pbio.3001389
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001389
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3001389&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.3001389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Mathis Loïc Messager & Bernhard Lehner & Günther Grill & Irena Nedeva & Oliver Schmitt, 2016. "Estimating the volume and age of water stored in global lakes using a geo-statistical approach," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    3. N. Evangeliou & H. Grythe & Z. Klimont & C. Heyes & S. Eckhardt & S. Lopez-Aparicio & A. Stohl, 2020. "Atmospheric transport is a major pathway of microplastics to remote regions," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Andrew Gelman & Ben Goodrich & Jonah Gabry & Aki Vehtari, 2019. "R-squared for Bayesian Regression Models," The American Statistician, Taylor & Francis Journals, vol. 73(3), pages 307-309, July.
    5. Cristina Romera-Castillo & Maria Pinto & Teresa M. Langer & Xosé Antón Álvarez-Salgado & Gerhard J. Herndl, 2018. "Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    6. Laurent Lebreton & Anthony Andrady, 2019. "Future scenarios of global plastic waste generation and disposal," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    7. Meredith E. Seeley & Bongkeun Song & Renia Passie & Robert C. Hale, 2020. "Microplastics affect sedimentary microbial communities and nitrogen cycling," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. Jonah Gabry & Daniel Simpson & Aki Vehtari & Michael Betancourt & Andrew Gelman, 2019. "Visualization in Bayesian workflow," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 389-402, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Ragusa & Maria Matta & Loredana Cristiano & Roberto Matassa & Ezio Battaglione & Alessandro Svelato & Caterina De Luca & Sara D’Avino & Alessandra Gulotta & Mauro Ciro Antonio Rongioletti & Pi, 2022. "Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas," IJERPH, MDPI, vol. 19(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barakat, Bilal Fouad & Dharamshi, Ameer & Alkema, Leontine & Antoninis, Manos, 2021. "Adjusted Bayesian Completion Rates (ABC) Estimation," SocArXiv at368, Center for Open Science.
    2. Adrian Rauchfleisch & Mike S Schäfer & Dario Siegen, 2021. "Beyond the ivory tower: Measuring and explaining academic engagement with journalists, politicians and industry representatives among Swiss professorss," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-20, May.
    3. Sonja Herrmann & Christian Nagel, 2023. "Early Careers of Graduates from Private and Public Universities in Germany: A Comparison of Income Differences Regarding the First Employment," Research in Higher Education, Springer;Association for Institutional Research, vol. 64(1), pages 129-146, February.
    4. Connor M. French & Laura D. Bertola & Ana C. Carnaval & Evan P. Economo & Jamie M. Kass & David J. Lohman & Katharine A. Marske & Rudolf Meier & Isaac Overcast & Andrew J. Rominger & Phillip P. A. Sta, 2023. "Global determinants of insect mitochondrial genetic diversity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Ameer Dharamshi & Bilal Barakat & Leontine Alkema & Manos Antoninis, 2022. "A Bayesian model for estimating Sustainable Development Goal indicator 4.1.2: School completion rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1822-1864, November.
    6. Aldo Gardini & Enrico Fabrizi & Carlo Trivisano, 2022. "Poverty and inequality mapping based on a unit‐level log‐normal mixture model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2073-2096, October.
    7. Lindeløv, Jonas Kristoffer, 2020. "mcp: An R Package for Regression With Multiple Change Points," OSF Preprints fzqxv, Center for Open Science.
    8. Magdalena Kogut-Jaworska & Elżbieta Ociepa-Kicińska, 2023. "Practical Implications of Smart Specialization Strategy: Barriers to Implementation, Role of the Public Sector, and Benefits for Entrepreneurs," SAGE Open, , vol. 13(2), pages 21582440231, June.
    9. Zhang, Yunchang & Fricker, Jon D., 2021. "Quantifying the impact of COVID-19 on non-motorized transportation: A Bayesian structural time series model," Transport Policy, Elsevier, vol. 103(C), pages 11-20.
    10. Frederik Banis & Henrik Madsen & Niels K. Poulsen & Daniela Guericke, 2020. "Prosumer Response Estimation Using SINDyc in Conjunction with Markov-Chain Monte-Carlo Sampling," Energies, MDPI, vol. 13(12), pages 1-16, June.
    11. Jair Andrade & Jim Duggan, 2021. "A Bayesian approach to calibrate system dynamics models using Hamiltonian Monte Carlo," System Dynamics Review, System Dynamics Society, vol. 37(4), pages 283-309, October.
    12. Ya Li & Hanqin Tian & Yuanzhi Yao & Hao Shi & Zihao Bian & Yu Shi & Siyuan Wang & Taylor Maavara & Ronny Lauerwald & Shufen Pan, 2024. "Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    14. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    15. Dongmei Feng & Colin J. Gleason & Peirong Lin & Xiao Yang & Ming Pan & Yuta Ishitsuka, 2021. "Recent changes to Arctic river discharge," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    16. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    17. Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," Papers 2012.14503, arXiv.org.
    18. Changping Zhao & Juanjuan Sun & Yun Zhang, 2022. "A Study of the Drivers of Decarbonization in the Plastics Supply Chain in the Post-COVID-19 Era," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    19. van Kesteren Erik-Jan & Bergkamp Tom, 2023. "Bayesian analysis of Formula One race results: disentangling driver skill and constructor advantage," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 19(4), pages 273-293, December.
    20. Kawther Saeedi & Anna Visvizi & Dimah Alahmadi & Amal Babour, 2023. "Smart Cities and Households’ Recyclable Waste Management: The Case of Jeddah," Sustainability, MDPI, vol. 15(8), pages 1-23, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3001389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.