IDEAS home Printed from https://ideas.repec.org/a/pfq/journl/v63y2018i1p80-95.html
   My bibliography  Save this article

Comparison of Risk Calculation Based on Historical Simulation and the Copula Function

Author

Listed:
  • Miskolczi, Panna

Abstract

The fundamental aim of this paper is to compare risk calculation based on historical simulation with risk calculation based on the copula function. In the case of historical simulation it is assumed that future data can be estimated on the basis of historical data. The copula function is a multi-dimensional distribution function with which we can explore the correlations between probability variables (in this case, equities within the portfolio) and simulate or forecast their future development. A method is called “better” if it enables a more accurate estimation of risk, i.e. where actual and estimated values are closer to each other. In this paper, the Value at Risk and Expected Shortfall risk measures are used to determine risk, while the accuracy of the two simulations is tested with the backtesting method. Based on the results of the empirical study of the daily price data of seven equities we may conclude that risk calculation based on the copula function may contribute to a more precise modelling of risk.

Suggested Citation

  • Miskolczi, Panna, 2018. "Comparison of Risk Calculation Based on Historical Simulation and the Copula Function," Public Finance Quarterly, Corvinus University of Budapest, vol. 63(1), pages 80-95.
  • Handle: RePEc:pfq:journl:v:63:y:2018:i:1:p:80-95
    as

    Download full text from publisher

    File URL: https://unipub.lib.uni-corvinus.hu/8751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan, Jun, 2007. "Enjoy the Joy of Copulas: With a Package copula," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i04).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    2. Miao, Ruiqing & Hennessy, David A. & Feng, Hongli, 2016. "The Effects of Crop Insurance Subsidies and Sodsaver on Land-Use Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(2), May.
    3. Pisit Leeahtam & Chukiat Chaiboonsri & Kanchana Chokethaworn & Prasert Chaitip & Songsak Sriboonchitta, 2011. "The Appropriate Model and Dependence Measures of Thailand’s Exchange Rate and Malaysia’s Exchange Rate: Linear, Nonlinear and Copulas Approach," Journal of Knowledge Management, Economics and Information Technology, ScientificPapers.org, vol. 1(6), pages 1-14, October.
    4. Majeed, Fahd & Khanna, Madhu & Miao, Ruiqing & Betes, Elena Blanc & Hudiburg, Tara & DeLucia, Evan, 2022. "Payment for carbon mitigation reduces riskiness of bioenergy crop production," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322277, Agricultural and Applied Economics Association.
    5. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    6. Junker, Robert R. & Griessenberger, Florian & Trutschnig, Wolfgang, 2021. "Estimating scale-invariant directed dependence of bivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    7. Mohit Anand & Ruiqing Miao & Madhu Khanna, 2019. "Adopting bioenergy crops: Does farmers’ attitude toward loss matter?," Agricultural Economics, International Association of Agricultural Economists, vol. 50(4), pages 435-450, July.
    8. Jiří Dvořák & Tomáš Mrkvička, 2022. "Graphical tests of independence for general distributions," Computational Statistics, Springer, vol. 37(2), pages 671-699, April.
    9. Erlend Bø & Peter Lambert & Thor Thoresen, 2012. "Horizontal inequity under a dual income tax system: principles and measurement," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(5), pages 625-640, October.
    10. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    11. Göran Kauermann & Christian Schellhase & David Ruppert, 2013. "Flexible Copula Density Estimation with Penalized Hierarchical B-splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 685-705, December.
    12. Cole, Matthew A. & Elliott, Robert J.R. & Occhiali, Giovanni & Strobl, Eric, 2018. "Power outages and firm performance in Sub-Saharan Africa," Journal of Development Economics, Elsevier, vol. 134(C), pages 150-159.
    13. Dongdong Li & X. Joan Hu & Mary L. McBride & John J. Spinelli, 2020. "Multiple event times in the presence of informative censoring: modeling and analysis by copulas," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 573-602, July.
    14. Michael Schomaker & Christian Heumann, 2020. "When and when not to use optimal model averaging," Statistical Papers, Springer, vol. 61(5), pages 2221-2240, October.
    15. Panagiota Galiatsatou & Christos Makris & Panayotis Prinos & Dimitrios Kokkinos, 2019. "Nonstationary joint probability analysis of extreme marine variables to assess design water levels at the shoreline in a changing climate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 1051-1089, September.
    16. Arbel, Julyan & Crispino, Marta & Girard, Stéphane, 2019. "Dependence properties and Bayesian inference for asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    17. Shofiqul Islam & Sonia Anand & Jemila Hamid & Lehana Thabane & Joseph Beyene, 2020. "A copula-based method of classifying individuals into binary disease categories using dependent biomarkers," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 871-897, December.
    18. Wyłupek, Grzegorz, 2023. "A nonparametric test for paired data," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    19. Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.
    20. Nadja Klein & Thomas Kneib & Giampiero Marra & Rosalba Radice & Slawa Rokicki & Mark E. McGovern, 2018. "Mixed Binary-Continuous Copula Regression Models with Application to Adverse Birth Outcomes," CHaRMS Working Papers 18-06, Centre for HeAlth Research at the Management School (CHaRMS).

    More about this item

    Keywords

    copula; historical simulation; backtesting; Value at Risk; Expected Shortfall;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pfq:journl:v:63:y:2018:i:1:p:80-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Hoffmann (email available below). General contact details of provider: https://edirc.repec.org/data/bkeeehu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.