IDEAS home Printed from https://ideas.repec.org/a/pal/marecl/v22y2020i2d10.1057_s41278-020-00149-4.html
   My bibliography  Save this article

Influence and transparency at the IMO: the name of the game

Author

Listed:
  • Harilaos N. Psaraftis

    (Technical University of Denmark)

  • Christos A. Kontovas

    (Liverpool John Moores University)

Abstract

No abstract is available for this item.

Suggested Citation

  • Harilaos N. Psaraftis & Christos A. Kontovas, 2020. "Influence and transparency at the IMO: the name of the game," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(2), pages 151-172, June.
  • Handle: RePEc:pal:marecl:v:22:y:2020:i:2:d:10.1057_s41278-020-00149-4
    DOI: 10.1057/s41278-020-00149-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41278-020-00149-4
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41278-020-00149-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harilaos N. Psaraftis, 2019. "Speed optimization versus speed reduction: Are speed limits better than a bunker levy?," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(4), pages 524-542, December.
    2. Harilaos N. Psaraftis, 2019. "Speed Optimization vs Speed Reduction: the Choice between Speed Limits and a Bunker Levy," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Kokkinos & Eftihia Nathanail, 2023. "A Fuzzy Cognitive Map and PESTEL-Based Approach to Mitigate CO 2 Urban Mobility: The Case of Larissa, Greece," Sustainability, MDPI, vol. 15(16), pages 1-30, August.
    2. Harilaos N. Psaraftis & Christos A. Kontovas, 2020. "Decarbonization of Maritime Transport: Is There Light at the End of the Tunnel?," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
    3. Alam Md Moshiul & Roslina Mohammad & Fariha Anjum Hira & Nurazean Maarop, 2022. "Alternative Marine Fuel Research Advances and Future Trends: A Bibliometric Knowledge Mapping Approach," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    4. Monios, Jason & Ng, Adolf K.Y., 2021. "Competing institutional logics and institutional erosion in environmental governance of maritime transport," Journal of Transport Geography, Elsevier, vol. 94(C).
    5. Joseph Earsom & Tom Delreux, 2021. "A Nice Tailwind: The EU’s Goal Achievement at the IMO Initial Strategy," Politics and Governance, Cogitatio Press, vol. 9(3), pages 401-411.
    6. Zis, Thalis P.V., 2021. "A game theoretic approach on improving sulphur compliance," Transport Policy, Elsevier, vol. 114(C), pages 127-137.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beullens, Patrick & Ge, Fangsheng & Hudson, Dominic, 2023. "The economic ship speed under time charter contract—A cash flow approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    2. Harilaos N. Psaraftis & Thalis Zis, 2021. "Impact assessment of a mandatory operational goal-based short-term measure to reduce GHG emissions from ships: the LDC/SIDS case study," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 21(3), pages 445-467, September.
    3. Ge, Fangsheng & Beullens, Patrick & Hudson, Dominic, 2021. "Optimal economic ship speeds, the chain effect, and future profit potential," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 168-196.
    4. Thalis P. V. Zis & Harilaos N. Psaraftis, 2022. "Impacts of short-term measures to decarbonize maritime transport on perishable cargoes," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 602-629, September.
    5. Ghaforian Masodzadeh, Peyman & Ölçer, Aykut I. & Ballini, Fabio & Christodoulou, Anastasia, 2022. "How to bridge the short-term measures to the Market Based Measure? Proposal of a new hybrid MBM based on a new standard in ship operation," Transport Policy, Elsevier, vol. 118(C), pages 123-142.
    6. Harilaos N. Psaraftis & Christos A. Kontovas, 2020. "Decarbonization of Maritime Transport: Is There Light at the End of the Tunnel?," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
    7. Yifan Wang & Laurence A. Wright, 2021. "A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation," World, MDPI, vol. 2(4), pages 1-26, October.
    8. Adland, Roar & Cariou, Pierre & Wolff, Francois-Charles, 2020. "Optimal ship speed and the cubic law revisited: Empirical evidence from an oil tanker fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    9. Hui-Huang Tai & Yun-Hua Chang, 2022. "Reducing pollutant emissions from vessel maneuvering in port areas," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 651-671, September.
    10. Xi Jiang & Haijun Mao & Yadong Wang & Hao Zhang, 2020. "Liner Shipping Schedule Design for Near-Sea Routes Considering Big Customers’ Preferences on Ship Arrival Time," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    11. Liqian Yang & Gang Chen & Jinlou Zhao & Niels Gorm Malý Rytter, 2020. "Ship Speed Optimization Considering Ocean Currents to Enhance Environmental Sustainability in Maritime Shipping," Sustainability, MDPI, vol. 12(9), pages 1-24, May.
    12. Dan Zhuge & Shuaian Wang & Lu Zhen & Gilbert Laporte, 2021. "Subsidy design in a vessel speed reduction incentive program under government policies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 344-358, April.
    13. Nestor Goicoechea & Luis María Abadie, 2021. "Optimal Slow Steaming Speed for Container Ships under the EU Emission Trading System," Energies, MDPI, vol. 14(22), pages 1-25, November.
    14. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Tayfun Uyanık & Yunus Yalman & Özcan Kalenderli & Yasin Arslanoğlu & Yacine Terriche & Chun-Lien Su & Josep M. Guerrero, 2022. "Data-Driven Approach for Estimating Power and Fuel Consumption of Ship: A Case of Container Vessel," Mathematics, MDPI, vol. 10(22), pages 1-21, November.
    16. Paula Pereda & Andrea Lucchesi & Thais Diniz & Rayan Wolf, 2023. "Carbon Tax in the Shipping Sector: Assessing Economic and Environmental Impacts," Working Papers, Department of Economics 2023_04, University of São Paulo (FEA-USP).
    17. Monica Grosso & Fabio Luis Marques dos Santos & Konstantinos Gkoumas & Marcin Stępniak & Ferenc Pekár, 2021. "The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    18. Maksymilian Mądziel, 2023. "Future Cities Carbon Emission Models: Hybrid Vehicle Emission Modelling for Low-Emission Zones," Energies, MDPI, vol. 16(19), pages 1-16, October.
    19. Fan, Lixian & Gu, Bingmei & Luo, Meifeng, 2020. "A cost-benefit analysis of fuel-switching vs. hybrid scrubber installation: A container route through the Chinese SECA case," Transport Policy, Elsevier, vol. 99(C), pages 336-344.
    20. Chao-Feng Gao & Zhi-Hua Hu, 2021. "Speed Optimization for Container Ship Fleet Deployment Considering Fuel Consumption," Sustainability, MDPI, vol. 13(9), pages 1-18, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:marecl:v:22:y:2020:i:2:d:10.1057_s41278-020-00149-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.