IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i9d10.1057_jors.2010.131.html
   My bibliography  Save this article

Designing greedy algorithms for the flow-shop problem by means of Empirically Adjusted Greedy Heuristics (EAGH)

Author

Listed:
  • A Corominas

    (Technical University of Catalonia (UPC))

  • R Pastor

    (Technical University of Catalonia (UPC))

Abstract

This paper introduces Empirically Adjusted Greedy Heuristics (EAGH), a procedure for designing greedy algorithms for a given combinatorial optimization problem and illustrates the way in which EAGH works with an application to minimize the makespan in the permutation flow-shop problem. The basic idea behind EAGH is that a greedy heuristic can be seen as a member of an infinite set of heuristics, this set being defined by a function that depends on several parameters. Each set of values of the parameters corresponds to a specific greedy heuristic. Then, the best element of the set, for a training set of instances of the problem, is found by applying a non-linear optimization algorithm to a function that measures the quality of the obtained solutions to the instances of the training set, and which depends on the parameters that characterize each specific algorithm. EAGH allows improving known heuristics or finding good new ones.

Suggested Citation

  • A Corominas & R Pastor, 2011. "Designing greedy algorithms for the flow-shop problem by means of Empirically Adjusted Greedy Heuristics (EAGH)," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1704-1710, September.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:9:d:10.1057_jors.2010.131
    DOI: 10.1057/jors.2010.131
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2010.131
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2010.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert H. Storer & S. David Wu & Renzo Vaccari, 1992. "New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling," Management Science, INFORMS, vol. 38(10), pages 1495-1509, October.
    2. M F Anjos & R C H Cheng & C S M Currie, 2004. "Maximizing revenue in the airline industry under one-way pricing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(5), pages 535-541, May.
    3. Chelouah, Rachid & Siarry, Patrick, 2005. "A hybrid method combining continuous tabu search and Nelder-Mead simplex algorithms for the global optimization of multiminima functions," European Journal of Operational Research, Elsevier, vol. 161(3), pages 636-654, March.
    4. David G. Dannenbring, 1977. "An Evaluation of Flow Shop Sequencing Heuristics," Management Science, INFORMS, vol. 23(11), pages 1174-1182, July.
    5. Herbert G. Campbell & Richard A. Dudek & Milton L. Smith, 1970. "A Heuristic Algorithm for the n Job, m Machine Sequencing Problem," Management Science, INFORMS, vol. 16(10), pages 630-637, June.
    6. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    7. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    8. Robert E. Bixby, 2002. "Solving Real-World Linear Programs: A Decade and More of Progress," Operations Research, INFORMS, vol. 50(1), pages 3-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    2. Asoo J. Vakharia & Yih‐Long Chang, 1990. "A simulated annealing approach to scheduling a manufacturing cell," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 559-577, August.
    3. Fernandez-Viagas, Victor & Talens, Carla & Framinan, Jose M., 2022. "Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 869-882.
    4. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    5. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
    6. Ho, Johnny C., 1995. "Flowshop sequencing with mean flowtime objective," European Journal of Operational Research, Elsevier, vol. 81(3), pages 571-578, March.
    7. Ben-Daya, M. & Al-Fawzan, M., 1998. "A tabu search approach for the flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 109(1), pages 88-95, August.
    8. Peng-Yeng Yin & Hsin-Min Chen & Yi-Lung Cheng & Ying-Chieh Wei & Ya-Lin Huang & Rong-Fuh Day, 2021. "Minimizing the Makespan in Flowshop Scheduling for Sustainable Rubber Circular Manufacturing," Sustainability, MDPI, vol. 13(5), pages 1-18, February.
    9. Baptiste, Pierre, 2006. "Stochastic algorithms: Using the worst to reach the best," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 41-51, February.
    10. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    11. M Haouari & T Ladhari, 2003. "A branch-and-bound-based local search method for the flow shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1076-1084, October.
    12. Kalczynski, Pawel J. & Kamburowski, Jerzy, 2009. "An empirical analysis of the optimality rate of flow shop heuristics," European Journal of Operational Research, Elsevier, vol. 198(1), pages 93-101, October.
    13. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 1996. "A fast tabu search algorithm for the permutation flow-shop problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 160-175, May.
    14. Botta-Genoulaz, Valerie, 2000. "Hybrid flow shop scheduling with precedence constraints and time lags to minimize maximum lateness," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 101-111, March.
    15. Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
    16. Cheng, MingBao & Sun, ShiJie & He, LongMin, 2007. "Flow shop scheduling problems with deteriorating jobs on no-idle dominant machines," European Journal of Operational Research, Elsevier, vol. 183(1), pages 115-124, November.
    17. F T Tseng & J N D Gupta & E F Stafford, 2006. "A penalty-based heuristic algorithm for the permutation flowshop scheduling problem with sequence-dependent set-up times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(5), pages 541-551, May.
    18. Fernando Luis Rossi & Marcelo Seido Nagano, 2022. "Beam search-based heuristics for the mixed no-idle flowshop with total flowtime criterion," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1311-1346, December.
    19. Martín Ravetti & Carlos Riveros & Alexandre Mendes & Mauricio Resende & Panos Pardalos, 2012. "Parallel hybrid heuristics for the permutation flow shop problem," Annals of Operations Research, Springer, vol. 199(1), pages 269-284, October.
    20. Logendran, Rasaratnam & Mai, Luen & Talkington, Diane, 1995. "Combined heuristics for bi-level group scheduling problems," International Journal of Production Economics, Elsevier, vol. 38(2-3), pages 133-145, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:9:d:10.1057_jors.2010.131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.