IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v61y2010i8d10.1057_jors.2009.81.html
   My bibliography  Save this article

Robustness and duality in linear programming

Author

Listed:
  • V Gabrel

    (LAMSADE, CNRS and Université Paris-Dauphine)

  • C Murat

    (LAMSADE, CNRS and Université Paris-Dauphine)

Abstract

In this paper, we consider a linear program in which the right hand sides of the constraints are uncertain and inaccurate. This uncertainty is represented by intervals, that is to say that each right hand side can take any value in its interval regardless of other constraints. The problem is then to determine a robust solution, which is satisfactory for all possible coefficient values. Classical criteria, such as the worst case and the maximum regret, are applied to define different robust versions of the initial linear program. More recently, Bertsimas and Sim have proposed a new model that generalizes the worst case criterion. The subject of this paper is to establish the relationships between linear programs with uncertain right hand sides and linear programs with uncertain objective function coefficients using the classical duality theory. We show that the transfer of the uncertainty from the right hand sides to the objective function coefficients is possible by establishing new duality relations. When the right hand sides are approximated by intervals, we also propose an extension of the Bertsimas and Sim's model and we show that the maximum regret criterion is equivalent to the worst case criterion.

Suggested Citation

  • V Gabrel & C Murat, 2010. "Robustness and duality in linear programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(8), pages 1288-1296, August.
  • Handle: RePEc:pal:jorsoc:v:61:y:2010:i:8:d:10.1057_jors.2009.81
    DOI: 10.1057/jors.2009.81
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2009.81
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2009.81?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Averbakh, Igor & Lebedev, Vasilij, 2005. "On the complexity of minmax regret linear programming," European Journal of Operational Research, Elsevier, vol. 160(1), pages 227-231, January.
    2. Mausser, Helmut E. & Laguna, Manuel, 1999. "A heuristic to minimax absolute regret for linear programs with interval objective function coefficients," European Journal of Operational Research, Elsevier, vol. 117(1), pages 157-174, August.
    3. Inuiguchi, Masahiro & Sakawa, Masatoshi, 1995. "Minimax regret solution to linear programming problems with an interval objective function," European Journal of Operational Research, Elsevier, vol. 86(3), pages 526-536, November.
    4. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    5. J W Chinneck & K Ramadan, 2000. "Linear programming with interval coefficients," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(2), pages 209-220, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Carlos Espinoza Garcia & Laurent Alfandari, 2018. "Robust location of new housing developments using a choice model," Annals of Operations Research, Springer, vol. 271(2), pages 527-550, December.
    2. Virginie Gabrel & Cécile Murat & Lei Wu, 2013. "New models for the robust shortest path problem: complexity, resolution and generalization," Annals of Operations Research, Springer, vol. 207(1), pages 97-120, August.
    3. Toloo, Mehdi & Mensah, Emmanuel Kwasi & Salahi, Maziar, 2022. "Robust optimization and its duality in data envelopment analysis," Omega, Elsevier, vol. 108(C).
    4. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    5. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    6. Selim Mankaï & Khaled Guesmi, 2015. "Robust Portfolio Protection: A Scenarios-based Approach," Bankers, Markets & Investors, ESKA Publishing, issue 138, pages 30-44, September.
    7. Jianjian Wang & Feng He & Xin Shi, 2019. "Numerical solution of a general interval quadratic programming model for portfolio selection," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    8. Espinoza Garcia, Juan Carlos & Alfandari, Laurent, 2015. "Robust location of new housing developments using a choice model," ESSEC Working Papers WP1521, ESSEC Research Center, ESSEC Business School.
    9. Hatami-Marbini, Adel & Arabmaldar, Aliasghar, 2021. "Robustness of Farrell cost efficiency measurement under data perturbations: Evidence from a US manufacturing application," European Journal of Operational Research, Elsevier, vol. 295(2), pages 604-620.
    10. Selim Mankai & Khaled Guesmi, 2014. "Robust Portfolio Protection: A Scenarios-Based Approach," Working Papers hal-04141326, HAL.
    11. Selim Mankaï, 2014. "Data-Driven Robust Optimization with Application to Portfolio Management," Working Papers 2014-104, Department of Research, Ipag Business School.
    12. Hladík, Milan, 2016. "Robust optimal solutions in interval linear programming with forall-exists quantifiers," European Journal of Operational Research, Elsevier, vol. 254(3), pages 705-714.
    13. Juan Carlos Espinoza Garcia & Laurent Alfandari, 2015. "Robust location of new housing developments using a choice model," Working Papers hal-01230621, HAL.
    14. repec:ipg:wpaper:2014-394 is not listed on IDEAS
    15. Kalaı¨, Rim & Lamboray, Claude & Vanderpooten, Daniel, 2012. "Lexicographic α-robustness: An alternative to min–max criteria," European Journal of Operational Research, Elsevier, vol. 220(3), pages 722-728.
    16. Jana Novotná & Milan Hladík & Tomáš Masařík, 2020. "Duality Gap in Interval Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 565-580, February.
    17. Jang, Hoon & Hwang, Kyosang & Lee, Taeho & Lee, Taesik, 2019. "Designing robust rollout plan for better rural perinatal care system in Korea," European Journal of Operational Research, Elsevier, vol. 274(2), pages 730-742.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beyer, Hawthorne L. & Dujardin, Yann & Watts, Matthew E. & Possingham, Hugh P., 2016. "Solving conservation planning problems with integer linear programming," Ecological Modelling, Elsevier, vol. 328(C), pages 14-22.
    2. Luo, Chunling & Tan, Chin Hon & Liu, Xiao, 2020. "Maximum excess dominance: Identifying impractical solutions in linear problems with interval coefficients," European Journal of Operational Research, Elsevier, vol. 282(2), pages 660-676.
    3. A O Kazakçi & S Rozakis & D Vanderpooten, 2007. "Energy crop supply in France: a min-max regret approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1470-1479, November.
    4. Chassein, André & Goerigk, Marc, 2017. "Minmax regret combinatorial optimization problems with ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 258(1), pages 58-69.
    5. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.
    6. Scott E. Sampson, 2008. "OR PRACTICE---Optimization of Vacation Timeshare Scheduling," Operations Research, INFORMS, vol. 56(5), pages 1079-1088, October.
    7. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
    8. Soyster, A.L. & Murphy, F.H., 2013. "A unifying framework for duality and modeling in robust linear programs," Omega, Elsevier, vol. 41(6), pages 984-997.
    9. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    10. Giove, Silvio & Funari, Stefania & Nardelli, Carla, 2006. "An interval portfolio selection problem based on regret function," European Journal of Operational Research, Elsevier, vol. 170(1), pages 253-264, April.
    11. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    12. Lin, Jun & Ng, Tsan Sheng, 2011. "Robust multi-market newsvendor models with interval demand data," European Journal of Operational Research, Elsevier, vol. 212(2), pages 361-373, July.
    13. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
    14. Henriques, C.O. & Luque, M. & Marcenaro-Gutierrez, O.D. & Lopez-Agudo, L.A., 2019. "A multiobjective interval programming model to explore the trade-offs among different aspects of job satisfaction under different scenarios," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 35-46.
    15. Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
    16. Ng, Tsan Sheng, 2013. "Robust regret for uncertain linear programs with application to co-production models," European Journal of Operational Research, Elsevier, vol. 227(3), pages 483-493.
    17. Nikulin, Yury, 2006. "Robustness in combinatorial optimization and scheduling theory: An extended annotated bibliography," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 606, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    18. Holte, Matias & Mannino, Carlo, 2013. "The implementor/adversary algorithm for the cyclic and robust scheduling problem in health-care," European Journal of Operational Research, Elsevier, vol. 226(3), pages 551-559.
    19. Vahid Nazari-Ghanbarloo & Ali Ghodratnama, 2021. "Optimizing a robust tri-objective multi-period reliable supply chain network considering queuing system and operational and disruption risks," Operational Research, Springer, vol. 21(3), pages 1963-2020, September.
    20. Roy, Bernard, 2010. "Robustness in operational research and decision aiding: A multi-faceted issue," European Journal of Operational Research, Elsevier, vol. 200(3), pages 629-638, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:61:y:2010:i:8:d:10.1057_jors.2009.81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.